Suthsurface Iieus

pulseEKKO ${ }^{\circledR}$ PRO:

 Advanced Survey Techniques
Multi - Polarization or Polarimetric GPR

GPR signals are measurements of electromagnetic (EM) fields. Many GPR users may not realize that EM fields are vector in nature.

A vector field has a direction as well as an amplitude. A common example is
(continued on page 2)

Introducing a NEW Service:

Ask - the - Analyst

December 2006 - www.sensoft.ca

Have you:

- obtained odd looking GPR data and wondered what it meant?
- no GPR experience and wanted advice on data you collected? or
- needed a second opinion on data interpretability?

Ask-the-Analyst is just for you. Submit a data set and our analysts will provide a report on your data.

New system owners and short-course attendees receive complimentary vouchers. If you have on-going needs, a fee-for-service option is available.

Check OUT
Ask-the-Analyst

From our customers files:

Mapping Concrete Voids

Voids below concrete floor slabs are a common problem. They can be the result of lack of support at construction joints, consolidation of the sub-base or sub-grade or, most commonly, the result of broken drains causing "washouts".

Parallel lines can be collected by setting markers set at the required intervals or using a laser line set to guide the user. Where the distance to be traversed is relatively short, the marker system is usually more efficient and has the

The Noggin 1000 is capable of detecting these voids and displaying them as cross-sectional images using EKKO_View or scaled depth slice images using the EKKO_Mapper software.
The secret to radar imaging in concrete is accurate positioning. In most cases a reasonable approximation of the void location and its area are all that is necessary. All lines should start from a known datum line so targets from adjacent survey lines line up properly when depth slice images are created.
advantage of allowing the operator to remove each marker as the scanning proceeds thus preventing errors in duplicate scanning.

The spacing between lines is also important and should be a maximum of 500 mm .
(continued on page 3)

In This Issue

Multi-Polarization 1,2
Ask-the-Analyst 1
Mapping Concrete Voids 1,3
Ask-the-Expert 3,4
See us at 4

Multi - Polarization or Polarimetric GPR (contived foom page 1)

the compass which indicates northsouth direction by aligning the compass needle with the magnetic field direction.
GPR's normally measure a single EM field component. Furthermore, GPR transmitting antennas do not excite fields in all directions. Therefore, GPR responses only contain part of the total potential information available.

Targets will respond and remit EM signals depending on the direction of exciting field, their geometry and material properties. The field detected at the receiver will be a function of both the excitation orientation and the target characteristics.

A full description of a target response needs a GPR with the ability to change
the excitation field direction and also to detect all of the components from the response of the target. Such GPR systems are called Multi-Polarization or Polarimetric GPR's. The physical nature is depicted in Figure 1.
Does this sound complicated? It can be! Does this mean the traditional GPR is useless? No!

Many applications are satisfied by a single polarization measurement. When necessary, antenna orientations can be changed and repeat measurements can be taken.

Figure 2 and 3 show single polarization responses from a reinforced concrete slab. The excitation and detection polarizations are indicated. Only reinforcing elements aligned with the field direction respond.

Figure 1: Illustration of multi-polarization measurement. Transmitter T, and Receiver R, sensing direction in two orthogonal directions help to fully characterize a target response.

Figure 2: $X X$ data from a concrete slab with reinforcing steels in 2 perpendicular directions. Only steel bars in the X-direction respond.

Figure 3: YY data from same slab as Figure 2. Only Y -direction bars respond.

Figure 4: The result from combining the two polarization data sets in Figure 2 and 3.

In general thin wire metal structures only respond when the electromagnetic field is parallel to the wire direction. The full response can be obtained by combining both polarizations as shown in Figure 4.

Figure 5: Photos of a multi-channel pulseEKKO PRO configured for 1000 MHz polarimetric GPR measurements.

New Multi-Channel pulseEKKO PRO systems allow simultaneous measurements of multiple polarizations with systems such as depicted in Figure 5.
While traditional GPR will continue to be useful for many applications, some advanced applications will be better addressed with Polarimetric GPR's.

Mapping Concrete Voids

The anticipated spatial extent of the void is also important.

Complications arise when there are fixtures which obstruct scanning the lines. These can be handled two ways. The first and preferred method is to measure the distance of the scan line blocked by the fixture and advance the Noggin by turning the odometer until the correct distance is noted on the DVL screen. The second method is to start a new file but change the start point to the correct position on the floor.

Cross sectional views of the data are seen during data collection and voids under concrete are often seen as a high amplitude reflection at the bottom of concrete interface (Figure 1).

Once data have been collected and transferred to a computer, the EKKO_Mapper software is used to generate depth slice images. In the depth slices images, voids, if present, can usually be seen as high amplitude signals (see the depth slice image on page 1). The image can later be refined by selecting a single slice and a precise band of thickness.

Images can be easily imported into AdobePhotoshop or CorelDraw to add annotations for final reports.

The case study shown here is a warehouse floor where settlement of engineered fill was known to have occurred. The Noggin 1000, used in the manner described above, produced
accurate images of the voiding below the slab and enabled cost effective repair procedures of drilling at the void locations and pumping in low strength grout.

In this example, since the concrete floor did not contain rebar, higher amplitude reflections from the voids are easy to see and map. Finding voids under concrete with reinforcing bars is more difficult because the strong reflections from the rebar often mask the more subtle reflection from the void. With careful analysis the amplitude anomaly associated with the void will still be visible and can be mapped (Figure 2).

Data and site description courtesy of Ron Grieve, Tekron Services.

Figure 1: Voids under concrete appear as high amplitude anomalies.

Figure 2: The high amplitude anomalies caused by voids under concrete can be more difficult to detect when the concrete contains rebar. ■

Ask-Hhe-Expert

Why doesn't 500 MHz work well to profile through ice to the bottom of a fresh water lake or river?

GPR bathymetry surveys through ice are usually more successful when using lower frequencies like 50 or 100 MHz . Several factors reduce the effectiveness of 500 MHz signals.
2) Clutter Dimension: When GPR wavelengths are shorter or similar in dimension to the objects encountered, volume scattering and internal reverberation occurs. A 500 MHz signal has a wavelength in ice of about 0.3 m so if the ice thickness has a similar dimension, a lot of energy gets trapped in the ice layer. A lower frequency GPR signal with a wavelength much longer than the ice thickness transmits more energy into the water.
(continued on page 4)

Recent Technical Papers

1. Exploring linkages between coastal progradation rates and the El Nino Southern Oscillation, Southwest Washington, USA, Geophysical Research Letters, Vol. 30, No. 9 (1448). By: Moore, L.J., Kaminsky, G.M., Jol, H.M., 2003
ref 350
2. Ground penetrating radar as an alternative to radiography, Insight, Vol. 47, No. 7 (July 2005), p. 414-415. By: De Souza, T., 2005
ref 351
3. What Lies Beneath: Modern Technologies Revamp Underground Investigations, CE News, February 2005, p. 30-33. By: Childers, J.,
2005
ref 354
4. Time domain reflectometry of glass beads/magnetite mixtures: A time and frequency domain study, Applied Physics Letters, Vol. 86, Letter 224102-2. By; Mattei, E., De Santis, A., Di Matteo, A., Pettinelli, E., Vannaroni, G., 2005
ref 356

See us at ...
 ...

Las Vegas, NV
January 23-26, 2007
www.worldofconcrete.com
Underground Construction
Technology
Houston, TX
January 30 - February 1, 2007
www.uctonline.com

Utility Construction Expo Las Vegas, NV

February 11-14, 2007
www.nuca.com
CGA Excavation Safety
Conference
Orlando, FL
March 6-8, 2007
www.cgaconference.com

World of Concrete

\qquad

One Day Noggin ${ }^{\circledR}$ Short Course January 8, 2007
March 5, 2007
Our Noggin ${ }^{\circledR}$ short courses are offered throughout the year to anyone interested in learning more about GPR and subsurface imaging.

Upcoming GPR courses

One Day Conquest ${ }^{\text {m" }}$ Course
January 9, 2007
March 6, 2007
Our Conquest"' courses are offered to anyone interested in learning more about our concrete imaging instrument.

Information Request

Please check off information required below and fax or Email back:

\square	pulseEKKO $^{\ominus}$ PRO	\square	EKKO Mapper
\square	Conquest $^{\text {TM }}$	\square	EKKO_View
\square	ConquestView $^{\square}$	\square	Rental Information
\square	OEM Noggin $^{\text {plus }}$	\square	3 Day GPR Short Course
\square	RoadMap $^{\text {TM }}$	\square	1 Day Noggin ${ }^{\text {® }}$ Short Course
\square	pulseEKKO ${ }^{\ominus}$ Borehole GPR	\square	Image Concrete with GPR
\square	Noggin $^{\circledR}$ Systems	\square	Other (please specify)

AGM-4 (continued from page 3)

3) Attenuation: Water starts to absorb EM energy more and more as frequency increases above 500 to 1000 MHz , which reduces GPR signal penetration.
4) Lower Detectable Signal: Higher frequency systems have smaller
detectable signals because antenna cross-sections are physically smaller than low frequency systems.

Signal amplitude follows an inverse square law dependence with frequency.

Attend a WORKSHOP: Imaging Concrete

```
with
```

Learn Why \& How
Los Angeles, CA - February 20, 2007
San Francisco, CA • February 23, 2007
Enroll: www.sensoft.ca

subsurface imaging solutions		
Sensors \& Software Inc. 1040 Stacey Court Mississauga, ON L4W 2X8 Canada	$\begin{aligned} & \text { Tel: (905) 624-8909 } \\ & \text { Fax: (905) 624-9365 } \end{aligned}$	Email: sales@sensoft.ca Website: www.sensoft.ca

