

subsurface imaging solutions

Sensors \& Software Inc. Product License, Copyright, Liability and Warranty Information

Important

Please read this document carefully before using the SOFTWARE PRODUCT or assembling the HARDWARE PRODUCT. By using the storage media or assembling the hardware, you are agreeing to be bound by the terms of this agreement. If you do not agree to the terms of this agreement, promptly contact Sensors \& Software, Inc. at the address indicated at the end of this document.

Definition

The word PRODUCT as used herein defines any item sold by Sensors \& Software, Inc. and may be comprised of hardware product which consists of physical objects and SOFTWARE PRODUCT which means computer programs, codes and related support materials.

Software Product License Agreement

In order to preserve and protect its rights under the applicable laws, Sensors \& Software, Inc. does not sell any rights to its Software products. Rather, Sensors \& Software, Inc. I grant the right to use its software, CDs, memory sticks (or other storage media) and documentation (hereafter collectively called software product) by means of a software product license. You acknowledge and agree that Sensors \& Software, Inc. retains worldwide title and rights to all its software and that the SOFTWARE PRODUCT Contains proprietary materials protected under copyright, trademark and trade secret laws.

Grant of Software Product License

In consideration of payment of the license fee which is the price you pay for the SOFTWARE PRODUCT and your agreement to abide by the terms and conditions of this License Agreement, Sensors \& Software, Inc. grants to you, the Licensee, a non-exclusive right to use the SOFTWARE PRODUCT under the following conditions:

You may:

- use the SOFTWARE PRODUCT on a single workstation owned, leased or otherwise controlled by you;
- copy the SOFTWARE PRODUCT for backup purposes in support of your use of the product on a single workstation.

You may not:

- copy, distribute or sell copies of the SOFTWARE PRODUCT or accompanying written materials, including modified or merged SOFTWARE PRODUCT to others;
- sell, license, sublicense, assign or otherwise transfer this license to anyone without the prior written consent of Sensors \& Software, Inc.;
- modify, adapt, translate, decompile, disassemble, reverse engineer or create derivative works based on the SOFTWARE PRODUCT.

Termination

This license is effective until terminated. You may terminate the license at any time by returning the SOFTWARE PRODUCT and all copies to Sensors \& Software, Inc. The license will automatically terminate without notice by Sensors \& Software, Inc. if you fail to comply with any terms or conditions of this
agreement. Upon termination, you agree to return all copies of the SOFTWARE PRODUCT to Sensors \& Software, Inc.

Update Policy

Sensors \& Software, Inc. may create, from time to time, updated versions of its SOFTWARE PRODUCT. At its option, Sensors \& Software, Inc. will make such updates available to licensees who have paid the update fee.

Product Warranty, Limited Remedy and Limited Liability

Sensors \& Software, Inc. warrants the PRODUCT to be free from defect in material and workmanship under normal use for a period of one year (365 days) from the date of shipment. Any third-party computer systems or other items not manufactured directly by Sensors \& Software, Inc. purchased with any PRODUCT or independently from Sensors \& Software, Inc. are subject to the original manufacturer's warranty and are not the responsibility of Sensors \& Software, Inc.

Sensors \& Software, Inc. makes no other warranties including, but not limited to, any implied warranty of merchantability or fitness for a particular purpose. If the PRODUCT is defective within the warranty period stated above, your exclusive remedy shall be, at Sensors \& Software, Inc.'s option to replace or repair the Sensors \& Software, Inc. PRODUCT or refund the purchase price of the Sensors \& Software, Inc. product. Except where prohibited by law, Sensors \& Software, Inc. will not be liable for any loss or damage arising from this Sensors \& Software, Inc. product, whether direct, indirect, special, incidental or consequential regardless of the legal theory asserted.

All statements, technical information, and recommendations related to any Sensors \& Software, Inc. PRODUCT are based on information believed to be reliable, but the accuracy or completeness is not guaranteed. Before using any PRODUCT, you must evaluate it and determine if it is suitable for your intended application. You assume all risks and liability associated with such use. Any statements related to the PRODUCT, which are not contained in Sensors \& Software, Inc. current publications, or any contrary statements contained on your purchase order shall have no force or effect unless expressly agreed upon, in writing, by an authorized officer of Sensors \& Software, Inc.

Sensors \& Software, Inc. warrants the CD, memory stick or other storage media on which the SOFTWARE PRODUCT is furnished to be free from defects in material and workmanship under normal use for a period of ninety (90) days from the date of purchase as evidenced by a copy of your invoice.

Except as specified above, any SOFTWARE PRODUCT is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the use or result of use of the product in terms of correctness, accuracy, reliability, currentness or otherwise. The entire risk as to the results and performance of the PRODUCT is assumed by you. If the PRODUCT is defective or used improperly, you, and not Sensors \& Software, Inc. or its dealers, distributors, agents, or employees, assume the entire cost of all necessary servicing, repair or correction.

Sensors \& Software, Inc.'s entire liability and your exclusive remedy for SOFTWARE PRODUCT shall be, at Sensors \& Software, Inc.'s option, either:

- the replacement of any storage media (CD, memory stick etc.) or hardware components which do not meet Sensors \& Software, Inc.'s Limited Warranty and which are returned to Sensors \& Software, Inc. postage prepaid with a copy of the receipt, or
- if Sensors \& Software, Inc. is unable to deliver a replacement storage media which is free of defects in material or workmanship, Licensee may terminate this agreement and have the license fee refunded by returning all copies of the SOFTWARE PRODUCT postage prepaid with a copy of the receipt.

If failure of any PRODUCT resulted from accident, abuse or misapplication, Sensors \& Software, Inc. shall have no responsibility to replace the SOFTWARE PRODUCT, refund the license fee, or replace or repair the HARDWARE PRODUCT.

Do not tamper with any $P R O D U C T$. $P R O D U C T$ contains no user serviceable parts. If tampering is evident in Sensors \& Software, Inc.'s opinion, warranty is void and null.

No oral or written information or advice given by Sensors \& Software, Inc., its dealers, distributors, agents or employees shall create a warranty or in any way increase the scope of this warranty and you may not rely on any such information or advice.

Neither Sensors \& Software, Inc. nor anyone else who has been involved in the creation, production or delivery of the $P R O D U C T$ shall be liable for any direct, indirect, special, exemplary, incidental or consequential damages, claims or actions including lost information, lost profits, or other damages arising out of the use or inability to use this PRODUCT even if Sensors \& Software, Inc. has been advised of the possibility of such damages.

This warranty gives you specific rights. You may have other rights which vary from province to province, territory to territory and certain limitations contained in this limited warranty may not apply to you.

General

No right, license, or interest to any Sensors \& Software, Inc. trademarks is granted hereunder with the purchase of the PRODUCT or the SOFTWARE PRODUCT license.

Governing Law

In the event of any conflict between any provision in this license agreement and limited warranty and any applicable provincial legislation, the applicable provincial legislation takes precedence over the contravening provision. This agreement shall be governed and construed in accordance with the laws of the Province of Ontario, Canada.

Serviceability

Should any term of this agreement be declared void or not enforceable by any court of competent jurisdiction, the remaining terms shall remain in full effect.

Waiver

Failure of either party to enforce any of its rights in this agreement or take action against any other party in the event of a breach of this agreement shall not be considered a waiver of the right to subsequent enforcement of its rights or actions in the event of subsequent breaches by the other party.

Acknowledgement

You acknowledge that you have read this agreement, understand it and agree to be bound by its terms and conditions. You further agree that this agreement is the complete and exclusive statement of agreement between the parties and supersedes all proposals or prior agreements oral or written between the parties relating to the subject matter of this agreement.

Should you have any questions concerning this agreement, please contact in writing:

Sensors \& Software Inc.

1040 Stacey Court
Mississauga, Ontario
Canada L4W 2X8
Tel:(905) 624-8909
Toll Free: 1-800-267-6013
Fax:(905) 624-9365
E-mail: customerservice@sensoft.ca
Sensors \& Software, Inc. trademarks are listed at: www.sensoft.ca/trademarks 1999-00236-05

Table of Contents

1 Introduction 1
2 Opening SliceView-Grid 3
2.1 Active Window 5
2.2 Depth Slice View 6
2.3 GPR Line View 8
2.4 Opening a New Window 10
3 Toolbar 11
4 Status Bar 15
4.1 GPS on the Status Bar 15
4.2 Exporting Status Bar Information 16
5 Menu Bar 17
5.1 File 17
5.1.1 Export Data 17
5.1.1.1 3D 18
5.1.1.2 3D HDF 19
5.1.1.3 3D CSV 22
5.1.1.4 Current Slice 23
5.1.2 Advanced File Options 29
5.1.2.1 Clean Intermediate Files on Exit 29
5.1.2.2 Remove SliceView-Grid Processing from GFP 29
5.1.2.3 Restore Default Application Settings 29
5.1.3 Exit 29
5.2 View 30
5.2.1 Export Image 32
5.2.2 Settings 34
5.2.2.1 Slice Settings 34
5.2.2.2 GPR Line Settings 45
5.2.2.3 Apply Default to Contrast Sensitivity 57
5.2.3 Zoom 57
5.2.4 Pan 58
5.2.5 Show Collected Lines 59
5.2.6 Show Scale Grid 60
5.2.7 Show Flags/Fiducials 61
5.2.8 GPS Format 62
5.3 Navigation 63
5.3.1 Slice Up or Slice Down 63
5.3.2 Line Up or Line Down 63
5.3.3 Line Left or Line Right 64
5.4 Tool 65
5.4.1 Data Processing 65
5.4.1.1 Data Position Limits 66
5.4.1.2 Units 67
5.4.1.3 Background Subtraction 67
5.4.1.4 Signal Velocity 70
5.4.1.5 Slice Processing 71
5.4.1.6 Defaults 82
5.4.1.7 Preview 82
5.4.1.8 OK 82
5.4.1.9 Cancel 82
5.4.1.10 Un-processed Data 82
5.4.2 Hyperbola Velocity Calibration 82
5.4.2.1 Velocity Calibration Window 83
5.4.2.2 Hyperbola Fitting 83
5.4.2.3 Measure 85
5.5 Window 86
5.5.1 New Plan View Window 86
5.5.2 New GPR Line Window 86
5.5.3 Cascade 87
5.5.4 Tile Horizontally 87
5.5.5 Tile Vertically 88
5.5.6 Arrange Icons 88
5.5.7 Selecting an Open Window 89
5.6 Help 89
5.6.1 Contents 89
5.6.2 Sensors \& Software Contact Information 89
5.6.3 About SliceView 89
6 Opening SliceView-Lines 91
6.1 SliceView-Lines Settings 94
6.1.1 Name 94
6.1.2 List Affected Lines 95
6.1.3 Process 95
6.1.3.1 Velocity 95
6.1.3.2 Processes 95
6.1.3.3 Gain 97
6.1.3.4 Slice 97
6.1.3.5 Interpolation 98
6.2 Viewing Depth Slices in MapView 101
Appendix A GFP_Edit 103
Appendix B Glossary 107

1 Introduction

Ground Penetrating Radar (GPR) data is often presented as two-dimensional cross-sections of the subsurface. Interpreting data from GPR line cross-sectional images can be confusing and labor intensive.

In areas where GPR data has been collected over an area, either by collecting the data in an organized XY grid or by walking back and forth and covering the area in a semi-random path, processing and displaying the data as a series of map images, called depth slices, is a very intuitive way of interpreting data.

The SliceView module generates depth slices that provide highly detailed subsurface information that can enhance GPR data interpretation and presentation. Displaying GPR responses as depth slices allows users to see the spatial correlation of targets, making interpretation easier as they can differentiate real targets from targets of no interest. For example, responses from utilities tend to produce linear targets while local targets, such as rocks, appear as point targets. This type of display can greatly enhance the interpretation of large data volumes.

The SliceView module consists of two parts, SliceView-Grid and SliceView-Lines that process the GPR data depending on how it was collected.
Use SliceView-Grid to generate depth slices from GPR data collected in an XY grid. Here is a plot of grid data displayed in the MapView window of EKKO_Project:

GPR data collected as an XY grid is processed using SliceView-Grid

Use SliceView-Lines to generate depth slices from GPR data collected in a semi-random path to cover the area. The data must have GPS or some other method to position the line(s) in 2D space. Here are two examples plotted in the MapView window in EKKO_Project:

Data collected in a semi-random path to cover the area of interest is processed using SliceView-Lines

Use SliceView to:

- Analyze data by viewing depth slices at increasing depths
- Reprocess data using a different velocity
- Save data images to graphic image files to include in reports
- Extract the local project (XY) positions or global (GPS) positions of targets and write them to reports.

In addition, SliceView-Grids also:

- Displays grid data collected with GPS depth slices on Google Earth
- Exports grid data to 3D data files and 3D visualization software (available from Sensors \& Software)

2 Opening SliceView-Grid

SliceView is an optional module of the EKKO_Project software. To access SliceView-Grid, you must first open EKKO_Project.

SliceView-Grid only works with project files containing grids.

To open EKKO_Project, click Start > All Programs > Sensors \& Software GPR > EKKO_Project.

The Getting Started dialog box automatically opens to assist you to select a grid.
In the Getting Started dialog box, click \rightarrow Browse for Project File...
Alternatively, click \Rightarrow Add Grid to create a new project with a grid or grids.

In the Open dialog box, navigate to and then select a grid or project file.

Note: If you are opening a project only gpz files are listed, if you are adding a grid to a project file, only .gfp files are listed.

Click Open.

The grid is displayed in the Project Explorer:

Note: GFP files can contain more than one grid survey but SliceView can only process one grid from a GFP file. If the GFP file contains more than one grid, you must select one grid survey from the list.
In Project Explorer, select a grid.
In the EKKO_Project menu bar, click Tools > SliceView-Grid.
Alternatively, right-click in the Project Explorer window and click SliceView-Grid.

The SliceView-Grid window opens:

Figure 1: The SliceView-Grid window.
The following conceptual grid image displays the relationship between depth slice images and X and Y GPR line images.

The first time SliceView opens a grid, it processes the grid data using default settings that are appropriate for most data sets. See Data Processing to see the settings and edit them if necessary.
Use the following table as a guide to working with the SliceView-Grid window:

| Item | Description |
| :--- | :--- | :--- |
| Menu bar | Most SliceView-Grid operations can be performed through the menu
 bar.
 To learn more, see the menu bar. |
| Toolbar | Most SliceView-Grid operations can be performed through the toolbar.
 To learn more, see the toolbar. |
| Depth Slice View | The Depth Slice window displays the current depth slice images.
 To learn more, see Depth Slice View. |
| GPR Line view | The GPR Line View displays the current GPR line image.
 To learn more, see GPR Line View. |

2.1 Active Window

SliceView-Grid typically displays two windows at a time; the Depth Slice and the GPR Line windows. Only one window can be active and accept changes at a time. The active window is the one that was last selected by clicking in it with the mouse cursor and is usually identified by its darker title banner and a red X in the top corner.

To make changes in a particular window, first ensure it is the active window. The active window is also checked in menu bar window list. Often, trying to edit a window immediately makes it the active window.

2.2 Depth Slice View

The Depth Slice View displays slices of the current grid survey data.

Figure 2: Depth SliceView
The slice images currently supported in SliceView-Grid are

- Depth Slices: images of the average GPR signal amplitudes in the specified depth range (or thickness). Depth slice images are dependent on the current Signal Velocity value.
- Time Slices: images of the average GPR signal amplitude in the specified time range.

The Plan View window title banner lists the current depth or time range used to generate the slice image. The optional Depth Slice Legend on the upper right also lists the depth or time range of the current slice image as well as other information.

- PCD Slice: for Conquest grid data, the Power Cable Detector (PCD) slice can be displayed by selecting the $\$$ button on the Toolbar.

Axes scales corresponding to the X and Y positions appear on the left and top of the depth slice image respectively.
To learn more about working in Depth Slices, see the Menu bar or Toolbar sections.

2.3 GPR Line View

The GPR Line View displays the X or Y line indicated by the red colored grid line in the Depth Slice View.

Figure 3: GPR Line View

For Conquest grid data, the Power Cable Detector (PCD) response is displayed below the grid line.

To learn more about working with the GPR Line images, see the Menu bar or Toolbar sections.

2.4 Opening a New Window

To open a new Depth Slice View, in the menu bar click Window > New Depth Slice View Window.
To open a new GPR Line View, in the menu bar click Window > New GPR Line Window.
When multiple windows are opened at once, only one GPR line window and one Depth Slice View window can be modified. These windows are indicated by the same bright green number in the upper left corner along the title banner.

3 Toolbar

Most SliceView-Grid operations can be performed through the toolbar. If the Toolbar is not visible, in the Menu Bar, click View > Toolbar.

To display a brief description of a toolbar button, hold your cursor over the button for at least one second.

A description is also displayed in the Status Bar.
Use the following table as a guide to working with the SliceView-Grid Toolbar:

Item	Description
Data Processing	To open the Data Processing dialog box, click the Data Processing icon. To learn more, see Data Processing.
∞ Hyperbola Velocity Calibration	To calculate a velocity value using hyperbola fitting, click the Hyperbola Velocity Calibration icon. To learn more, see Hyperbola Velocity Calibration.
Save Image As...	1. Click the Save Image As icon to save the image in the Active Window to a graphics image file. 2. Open the Save File dialog box. 3. Select the folder to save the image to. 4. Enter the File name. 5. Select the Save as type option (jpg, bmp, gif, png, tiff), 6. Click Save.
Save View	To save the image in the Active Window and attach it to the project file. When the GPR Summary Report is selected in EKKO_Project, the user can select from the images attached to project to appear in the report. To learn more, see GPR Summary Report in the EKKO_Project manual.
Copy current image to clipboard	To save the image in the Active Window to the clipboard, click the Copy current image to clipboard icon.
Print	Click the Print icon to print the image in the Active Window.
${ }^{1}{ }^{1} \phi$ Display Settings	To open the Settings dialog box, click the Display Settings icon. To learn more, see Slice Settings or GPR Line Settings.

Item	Description
Decrease Sensitivity	1. To decrease how sensitive the image is to small signal variations, select the image you want to change. 2. Click the Decrease Sensitivity icon. Sensitivity decreases by 5% each time you click the icon. The sensitivity range is 0 to 100%. The default is 100% (most sensitive). To learn more, see Sensitivity.
Increase Sensitivity	1. To increase how sensitive the image is to small signal variations, select the image you want to change. 2. Click the Increase Sensitivity icon. Sensitivity increases by 5% each time you click the icon. The sensitivity range is 0 to 100%. The default is 100% (most sensitive). To learn more, see Sensitivity.
Decrease Contrast	1. To decrease contrast, select the image you want to change. 2. Click the Decrease Contrast icon. Contrast decreases by 5% each time you click the icon. The contrast range is 0 to 100%. The default is 100%. To learn more, see Contrast.
0 Increase Contrast	1. To increase contrast, select the image you want to change. 2. Click the Increase Contrast icon. Contrast increases by 5% each time you click the icon. The contrast range is 0 to 100%. The default is 100%. To learn more, see Contrast.
Decrease Gain	If the Gain value is a numbered level, this button is enabled: 1. To decrease gain, select the window (depth slice or GPR line) you want to change. 2. Click the Decrease Gain icon. The gain level value will decrease by 1 , stopping at 1 . To learn more about gaining the GPR Line, see Gain. To learn more about gaining depth slices, see Amplitude Equalization Gain.
Increase Gain	If the Gain value is a numbered level, this button is enabled: 1. To increase gain, select the window (depth slice or GPR line) you want to change. 2. Click the Increase Gain icon. The gain level value will increase by 1 , stopping at 12 . To learn more about gaining the GPR Line, see Gain. To learn more about gaining depth slices, see Amplitude Equalization Gain.
Gain Value	Use dropdown to select Auto, User or a Numbered Gain Level for the currently active window (either GPR line or Depth Slice window). To learn more, see Gain. To learn more about gaining the GPR Line, see Gain. To learn more about gaining depth slices, see Amplitude Equalization Gain.

Item	Description
$\frac{4}{\mathrm{PCD}}$	To display the Power Cable Detector (PCD) image for Conquest data.
Toggle Collected Lines	To display data lines in the depth slice view window that correspond to all the data lines collected during the grid survey, click the Toggle Collected Lines icon.
Toggle Scale Grid Lines	To display grid lines that correspond to the major position labels in the depth slice view window, click the Toggle Scale Grid Lines icon.
Toggle Legend Viewing	To display a legend in either the Depth Slice View or GPR Line View window, click the Toggle Legend Viewing icon.
FID Display FID Text	Fiducial markers are added at significant positions during data collection. To display or hide fiducial markers, click the Display FID Text icon. To learn more, see Show Fiducials.
Zoom Out	Click the Zoom Out icon to display more of the image, making it smaller and possibly less detailed.
Zoom In	To display a more detailed view of a smaller area of the image, click the Zoom In icon.
Select Zoom Area	To zoom in on a specific area of the selected window, Select Zoom Area. 1. Click the Select Zoom Area icon. 2. Click in the image and drag the cursor to the dimensions you want to magnify. A box will be superimposed on the image as you drag it. 3. Release the mouse to zoom in on the selected area.
Fit to Window	To return the grid to full size, click the Fit to Window icon.
Pan View	To drag and drop data images around a zoomed-in image, click the Pan View icon. To learn more, see Pan.
Move Slice Up	To scroll up through the image one depth slice per click until you reach the highest depth slice, click the Move Slice Up icon. If a GPR line window is open, the slice cursor lines (Figure 4) on GPR line image move up to match the slice image. Moving through slice images provides insight into the depth of various features in the 3D volume. To learn more, see Navigation.

Item	Description
Move Slice Down	To scroll down through the image one depth slice per click until you reach the lowest depth slice, click the Move Slice Down icon. If a GPR Line window is open, the slice cursor lines on the GPR line image move down to match the slice image. Moving through slice images provides insight into the depth of various features in the 3D volume. To learn more, see Navigation.
$\mid-4$ Line Left	With a GPR Line pane open, click the Line Left icon to move left one Y GPR Line image at a time. To use this feature, Y -lines will have been collected and included to generate a depth slice image. To learn more, see Navigation.
Line Right	With a GPR Line pane open, click the Line Right icon to move right one Y GPR Line image at a time. To use this feature, Y -lines will have been collected and included to generate a depth slice image. To learn more, see Navigation.
A Line Up	With a GPR Line pane open, click the Line Up icon to move up one X GPR Line image at a time. To use this feature, X -lines will have been collected and included to generate a depth slice image To learn more, see Navigation.
\square Line Down	With a GPR Line pane open, click the Line Down icon to move down one X GPR Line image at a time. To use this feature, X-lines will have been collected and included to generate a depth slice image. To learn more, see Navigation.
Horizontally Tile Windows	To display all open windows so they are tiled horizontally, click the Horizontally Tile Windows icon. All panes are resized so they are all visible and accessible. To learn more, see Tile Horizontally.
Vertically Tile Windows	To display all open windows so they are tiled vertically, click the Vertically Tile Windows icon. All panes are resized so they are all visible and accessible. To learn more, see Tile Vertically.
Measure Distance on Image	To measure the velocity from a hyperbola in the grid data set, click the Measure Distance on Image icon.
? Help	Click the Help icon to open the SliceView-Grid Help file.

4 Status Bar

To display the status bar, on the bottom of the screen, click View > Status Bar.
Hold the mouse cursor over toolbar buttons to display screen tips on the status bar.
The right side of the status bar displays information about the position of the mouse cursor:

Slice(m): 0.300-0.400, X(m): 15.228, $Y(m): 13.402$
Cursor on the depth slice

Line:LINEX07, Depth(m): 1.308, Time(ns): $32.017, \operatorname{Pos}(m): 14.045$
Cursor on the GPR line images

4.1 GPS on the Status Bar

If GPS files are available or, if the Local - Global Coordinate relationship has been defined using GFP_Edit, moving the mouse cursor around the depth slice or GPR Line image displays GPS positions on the right side of the status bar.
Lat: 43.6324551 N, Long: 79.6388564 W, E: 609800.39, N: 4831951.80, Z: 17 T
The GPS information format is defined by the GPS Format; this could be Latitude-Longitude (in decimal degrees or degrees-minutes-seconds) or UTM (Universal Transverse Mercator) or both.

Note: there may be a difference between GPS positions on GPR Lines displayed in the SliceView-Grid and LineView software.
In LineView, which displays individual GPR lines, the GPS position is based by interpolating the GPS positions saved to the GPS file during data collection.
In SliceView-Grid, which displays multiple GPR lines combined into a grid, GPS positions are determined by using the defined Local-Global Coordinate Relationship and grid line positions.
Therefore, the GPS positions for any individual line in the grid displayed in SliceView-Grid will differ slightly from the GPS file collected with that line and used in LineView.

4.2 Exporting Status Bar Information

The Export Status Bar Information feature allows you to extract significant positions from the data image and copy them to other documents.
a. To copy the data information text from the status bar, position the mouse cursor in the position you want to record, and then press F8.
Press Shift + F8 to save the column headings text.
Paste the text into another document, such as MS Word or Excel.
To create a file similar to the following example, press Shift + F8 and then paste the first line into the document.
Press F8 for all the subsequent lines.

Slice (m)	$X(\mathrm{~m})$	$\mathrm{Y}(\mathrm{m})$	Latitude	Longitude	Lasting	Northing	UTM Zone
$0.400-0.450$	9.933	1.507	53.2792728 N	9.0571937 W	496186.51	5903339.58	29 U
$0.400-0.450$	9.532	2.019	53.2792786 N	9.0571949 W	496186.43	5903340.22	29 U
$0.400-0.450$	8.522	3.015	53.2792909 N	9.0572003 W	496186.08	5903341.6	29 U
$0.350-0.400$	7.996	3.513	53.2792972 N	9.0572032 W	496185.88	5903342.2929 U	
$0.350-0.400$	7.526	4.01	53.2793032 N	9.0572055 W	496185.73	5903342.96	29 U
$0.350-0.400$	7.028	4.55	53.2793097 N	9.0572077 W	496185.58	5903343.68	29 U
$0.350-0.400$	6.53	4.99253 .2793154 N	9.0572107 W	496185.38	5903344.3229 U		

5 Menu Bar

The SliceView-Grid menu bar contains links to a number of features that help you to navigate through, and work with, SliceView-Grid.

File View Navigation Tool Window Help
The following sections describe the SliceView-Grid Menu Bar features.

5.1 File

File			
Export Data Advanced File Options			
	Exit		

5.1.1 Export Data

SliceView-Grid data can be exported as a 3D file or depth slices to various formats:

- 3D files can be exported in HDF (Hierarchical Data Format) or CSV (Comma Separated Values) files.
- Depth Slices can be exported to Google Earth KMZ, Surfer ASCII GRD, or CSV (Comma Separated Values) files.

5.1.1.1 3D

Click File > Export Data > 3D to export grid survey data to an HDF or CSV file for processing and visualization with third-party software such as Golden Software's Voxler (available from Sensors \& Software).

Export Data	\bullet	3D... Advanced File Options
All Slices...		
Exit		Current Slice...

The following image shows 3D GPR data in Voxler:

Data is exported as the 3D location of each point within the grid ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) and the average signal strength at that point (amplitude). The X and Y voxel dimensions are controlled by the Slice Resolution value, while the Z voxel dimension is controlled by the Thickness value.
Increasing slice resolution and reducing depth slice thickness before generating the 3D file may produce better 3D image resolution.
The default processing for depth slices and 3D files reveal linear targets such as utilities, rebar, foundations, and point targets (archaeological artefacts and human remains). With some types of data, default processing may not be appropriate for the 3D data display. For example, to display geological data in 3D, turn off the migration and enveloping processes (DME Processing).

To preserve flat-lying layers in the data, turn off Background Subtraction.

The following image displays 3D geological data in Voxler that was processed in SliceView-Grid without Migration or Envelope processing:

Geological data that has not received envelope processing is best displayed when slice thickness is set finer than the default thickness, ideally the same as the temporal sampling interval. This is typically about $1 / 5$ of the default slice thickness value.

5.1.1.2 3D HDF

HDF files are a binary format that can be viewed in software such as Voxler (available from Sensors \& Software).
a. To export 3D data to HDF, in the menu File > Export Data > 3D.
b. In the Save As dialog box, in the Save as type drop-down list click Voxler HDF file.
c. Select the folder you want to save this data to.
d. Click Save.

When a grid survey is exported to HDF, the HDF file is named the same as the GFP file, with the grid name appended to the name, for example GPRData-Grid.HDF.
e. If Voxler is installed on the computer, Voxler launches automatically generates 3D images with pre-set parameters for the following types of 3D displays.

1) Volume Render (Volrender) displays the whole cube of data and allows the user to modify the transparency to highlight GPR reflections of certain signal strength. For example, it is common to make weak GPR reflectors transparent and only display the strongest reflections in the data.
2) ClipPlanes slice through the cube of data, like depth slices but with the advantage of slicing at any angle through the data cube.
3) Isosurfaces show all the points of a single, user defined GPR amplitude value in the cube with all other data transparent; great for showing the strongest reflectors in the data.

In the example above, GPR grid data is displayed in 3D in Voxler as a volume render (purple cube), a clip plane (top of purple cube) and an isosurface (grey, linear objects).

To edit the view, select the display, for example, Volrender, in the Network Manager window and modify the properties in the Property Manager window.

For each type of data display, there are many properties to adjust, but some of the more important ones when viewing GPR data are described below.

Volrender Properties

Change the Render method to 3D textures to provide a smoother image.

If desired, change the Colormap by clicking on the colormap and selecting a new colormap. Open the Colormap Editor by clicking on the ...

In the Colormap Editor change the Opacity Mapping to Middle Ramp and modify the opacity of the data by moving the opacity line:

This allows the user to make weak reflections in the data cube translucent or invisible and the stronger reflections visible.

ClipPlane Properties

Modify the Normal direction by changing the X, Y and Z values. $Z=-1$ to slice from top to bottom in a GPR cube. You can adjust these values to slice through the cube on an angle, for example $\mathrm{X}=1, \mathrm{Y}=1$ and $\mathrm{Z}=1$.

Slide the Distance from Center slider to change the position of the slice.

Isosurface Properties

Change the Colormap by clicking on the colormap and selecting a new colormap.

Slide the Isovalue slider to change the amplitude value to display.

5.1.1.3 3D CSV

CSV files can be imported into many programs; Microsoft Excel for example.
a. To export 3D data to a CSV file, in the menu bar click File > Export Data > 3D. In the Save As dialog box, in the Save as type drop-down list click XYZ-Amplitude Pairs.
Select the folder you want to save this data to.

Click Save.

The header line indicates the X, Y, Z and depth columns with the half-width of the voxel (or cell) in that direction. The header line also lists the total number of samples in the CSV file.

The CSV file lists depth or time depending on the Slice Units setting.

5.1.1.3.1 Depth

The CSV file format is X Y Z depth amplitude where amplitude values represent the average signal strength in the thickness of the depth slice.

The Z values (column three) represent elevation values with the surface at elevation zero (0.0) and the values are negative. The depth values (column four) are the same as the Z values, but positive.

$\mathrm{X} \pm 0.0250 \mathrm{~m}$	$\mathrm{Y} \pm 0.0250 \mathrm{~m}$	$\mathrm{Z} \pm 0.00250 \mathrm{~m}$	Depth $\pm 0.0025 \mathrm{~m}$	Amplitude A/D
0.025	0.025	-0.003	0.003	2801
0.025	0.075	-0.003	0.003	4432
0.025	0.125	-0.003	0.003	4195
0.025	0.175	-0.003	0.003	3826
0.025	0.225	-0.003	0.003	3315
0.025	0.275	-0.003	0.003	2465
0.025	0.325	-0.003	0.003	2698

5.1.1.3.2 Time

The CSV file Time format is X Y Z Time Amplitude.
The Z values (column three) are time values with the surface at time zero (0.0) so the values are negative; Time values (column four) are the same, but the values are positive.

$\mathrm{X} \pm 0.0250 \mathrm{~m}$	$\mathrm{Y} \pm 0.0250 \mathrm{~m}$	$\mathrm{Z} \pm 0.0500 \mathrm{~m}$	Time $\pm 0.0500 \mathrm{~ns}$	Amplitude A/D
0.025	0.025	-0.05	0.05	384
0.025	0.075	-0.05	0.05	633
0.025	0.125	-0.05	0.05	495
0.025	0.175	-0.05	0.05	581
0.025	0.225	-0.05	0.05	476
0.025	0.275	-0.05	0.05	342

5.1.1.4 Current Slice

5.1.1.4.1 Exporting Slice(s) to Google Earth

SliceView-Grid will not export to Google Earth unless a there is relationship between project coordinates and GPS coordinates.
EKKO_Project automatically creates a relationship if you have .GPS files.
If you do not have GPS data, or want to change the relationship, use the GFP_Edit program. To learn more, see the Editing Grids in GFP Edit.
a. To export the current slice to a Google Earth KMZ file, in the menu bar click File > Export Data > Current Slice.
To export all slices to a Google Earth KMZ file, in the menu bar click File > Export Data > All Slices.
In the Export slice dialog box, in the Save as type drop-down list click Google Earth KMZ.
The file defaults to the file and current folder name, but you can rename the file before saving it.

5.1.1.4.2 Viewing Slices in Google Earth

To display Google Earth (.kmz) files, Google Earth must be installed and the computer must have internet access.

Open .kmz files using one of the following methods:

- After saving a .kmz file, Google Earth automatically launches displaying the kmz file.
- From Windows Explorer, navigate to the kmz and double-click the file.
- Open Google Earth. Click File > Open, navigate to the kmz file, and then open it.

When a kmz file opens, Google Earth displays the GPR slice location and superimposes it over the ground image.

The following images displays a GPR slice plotted in Google Earth:

The Places pane enables slice display, line collection, and fiducial markers.
The .kmz file is listed in the Fly to tab Places pane, Temporary Places file. When exiting, Google Earth prompts you to save the .kmz file to My Places.
The Google Earth default view displays Collected Lines and Fiducial Markers on the data image.

Collected Lines

Collected Lines are listed in the Places pane, Temporary Places file. To enable or disable this feature, select or deselect the Collected Lines checkbox.

Fiducial Markers

Fiducial Markers are listed in the Places pane, Temporary Places file.
To enable or disable this feature, select or deselect the Fiducials checkbox.
To display individual Fiducial Markers, click the plus sign (+) beside the Fiducial option.

Depth Slices

Depth Slices are listed in the Places pane, Temporary Places file.

- To display the list of slices, click the plus sign (+) beside the kmz file name.
- To select a different depth slice image, in the Depth Slice list, click a slice.

Google Earth Accuracy

Google Earth images may be not always align with the actual GPS location. Google Earth may also place Depth slice images at high latitudes incorrectly.

The grid position can be adjusted using GFP_Edit. To learn more, see Exporting Grids to GFP Edit.

5.1.1.4.3 Surfer ASCII Grid Files

Surfer is third-party processing and visualization software developed by Golden Software for plotting two-dimensional data such as GPR depth slices.
a. To export the current slice to a Surfer ASCII Grid (.grd) file, select File > Export Data > Current Slice.
To export the all slices to Surfer ASCII Grid files, select File > Export Data > All Slices. In the Export slice dialog box, in the Save as type drop-down list click Surfer ASCII grid (grd).

The file name defaults to the file and current folder name, but you can rename the file before saving it.
The following table displays an example of .GRD file:

DSAA															
213	227														
-0.3	10.35														
-0.7	10.65														
0	5911														
0	0	0	0	0	0	50	110	189	118	63	200	123	164	205	30
0	0	0	0	0	0	100	221	378	236	127	400	202	148	242	61
0	0	0	0	0	0	150	331	567	355	190	600	366	488	610	91
0	0	0	0	0	0	201	442	757	473	254	800	404	316	485	12
0	0	0	0	0	0	251	552	946	592	317	1000	505	396	606	15
0	0	0	0	0	0	301	663	1135	710	381	1200	606	429	727	18
30	60	90	120	150	180	352	774	1325	829	445	1400	708	501	849	21
45	90	135	181	226	271	418	741	1224	787	485	1310	704	544	937	19
66	133	199	266	332	399	485	709	1124	745	525	1221	701	587	1025	18
49	99	149	198	248	298	551	677	1024	703	565	1132	697	630	1114	16
71	143	215	287	359	431	618	645	924	662	605	1042	694	673	1202	15
90	180	309	360	450	540	684	620	824	620	645	953	691	716	1290	13
91	183	464	495	458	550	751	604	724	578	685	864	687	760	1379	12
65	131	618	660	420	662	818	549	624	537	725	774	684	803	1467	11
46	92	773	825	525	827	884	517	524	495	765	685	680	846	1556	95
32	65	928	990	630	993	951	485	424	453	805	596	677	889	1644	80
45	91	1083	1156	736	1159	1018	453	384	417	845	507	674	933	1733	66
100	201	947	1011	644	1014	1106	675	646	692	995	558	666	932	1737	89
79	159	812	867	55.3	869	1194	651	765	972	1146	583	658	937	1742	11

5.1.1.4.4 CSV File

CSV (Comma Separated Values) files can be imported into many programs similar to Microsoft Excel.
a. To export the current slice to a .csv file, click File > Export Data > Current Slice.

To export the all slices to a .csv files, click File > Export Data > All Slices.
In the Export slice dialog box, in the Save as type drop-down list, click Comma Separated Values (.csv).

The file name defaults to the file and current folder name, but you can rename the file before saving it.

The header line indicates the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and depth columns with the half-width of the voxel (or cell) in that direction. The header line also lists the total number of samples in the CSV file.

The CSV file(s) list X, Y, and depth columns with the half-width of the voxel (or cell) in that direction. The header line also lists the total number of samples in the CSV file.

The CSV file list Depth or Time depending on the Slice Units setting.

5.1.2 Advanced File Options

Use the Advanced File Options menu to perform more advanced SliceView-Grid operations such as clean up intermediate files, remove all processing from the current GFP file, or restore the Default Application Settings.

File

Export Data		
Advanced File Options		Clean Intermediate Files on Exit Remove SliceView Processing from GFP Restore Default Application Settings

Note: Processing is not lost, just recalculated.

5.1.2.1 Clean Intermediate Files on Exit

Intermediate files are stored in your project GPZ file to enable images to be displayed quickly. After opening a file and processing GPR data files, SliceView-Grid generates intermediate files that display depth slices and GPR line images.

To automatically delete intermediate files when you exit SliceView-Grid, click Clean Intermediate Files on Exit.

If hard disk space is not an issue, leave this option unchecked so data images can display more quickly by not reprocessing data every time a file opens.

For small grids, data can be reprocessed and displayed quickly, but large grids may still take many minutes to process.

5.1.2.2 Remove SliceView-Grid Processing from GFP

SliceView-Grid files save data files names, grid geometry, and selected data processing for GPR data files.

To delete data processing settings from the file, click Remove SliceView Processing.
Note: Only use this option when you are trying to recover from a data processing error.

5.1.2.3 Restore Default Application Settings

To reset file settings to the default value, click Restore Default Application Settings.
Note: Only use this option when a severe error has occurred and recovery using other means has not solved the problem.

5.1.3 Exit

Click Exit to close SliceView-Grid and return to EKKO_Project.

5.2 View

To open the View menu, in the menu bar click View.

View	
Export Image	
Settings...	
Sensitivity Decrease	
Sensitivity Increase	$[1]$
Contrast Decrease	
Contrast Increase	
Apply Default To Contrast Sensitivity	
Zoom	
Pan	
Show Collected Lines	
Show Scale	
Show Scale Grid	
Show Legend	
Show Slice	
Show Flags/Fiducials	
Show Flag/Fiducial Text	
Skip Traces	
Font...	
Toolbar	
Status Bar	
GPS Format	

Use the following table as a guide to working with the View menu:

Item	Description
Export Image	Click Export Image to send a depth slice or GPR line view to the clipboard, save it as a graphics image file, or send it to a printer. To learn more, see Export Image.
Settings	Click Settings to adjust the GPR line and slice image color palette, line, scale and cursor colors, contrast, and sensitivity values. To learn more, see Slice Settings or GPR Line Settings.
Sensitivity Increase	Click Sensitivity Increase to make the image more sensitive by five percent increments. To learn more, see Sensitivity.

Item	Description
Sensitivity Decrease	To make the image less sensitive by five percent increments, click Sensitivity Decrease. To learn more, see Sensitivity.
Contrast Increase	To increase contrast by five percent increments, click Contrast Increase. To learn more, see Contrast.
Contrast Decrease	To decrease contrast by five percent increments, click Contrast Decrease. To learn more, see Contrast.
Zoom	To increase or decrease the size of the depth slice or GPR line image, click Zoom. To learn more, see Zoom.
San	To move images within a zoomed-in display, click Pan. To learn more, see Pan.
Show Collected	To superimpose lines onto the Depth Slice image to display where a grid's data lines were collected, click Show Collected Lines. Use this feature when a partial grid or partial lines were collected in a survey to avoid having to interpret a target in an area where no data was collected. To learn more, see Show Collected Lines.
Show Scale	To display scales around the image, click View > Show Scale. For Depth Slice images, X and Y position scales are displayed across the top and left side of the image respectively. To view the Depth Slice scale, see the Depth Slice View image.
For GPR Lines, a depth scale is displayed on the left side of the image. A time	
scale is displayed on the right side of the image and a position scale is	
displayed across the top of the image.	
To view the GPR Line scale, see the GPR Line View image.	

Item	Description
Show Slice	To display the depth slice image, click View > Show Slice. Show Slice displays only the position of collected lines without the slice image. This option defaults to on.
Show Flags/Fiducials	To display flags/fiducials (Figure 2), click View > Show Flags/Fiducials. Flags/Fiducials are markers and/or comments added during data acquisition at specific trace positions along the line. To learn more, see Show Flags/Fiducials.
Show Flag/Fiducial	To display text associated with the fiducials, click View > Show Flag/Fiducial Text. If the grid survey data does not contain any fiducials, this option is greyed out.
Text	If the data file contains positions where traces were skipped during data collection, display this information on the GPR Line image by clicking View > Show/Hide > Skipped Traces. Skipped traces appear as colored rectangles on the bottom of the GPR line.
Font	Use the Font option to define the font you want to use for the position, depth and time axes, and the text in the legends. Changing font type and size can increase the available screen area to display data images on and improve the readability of printed images or graphics image files.
Toolbar	To display the toolbar below the menu bar, click View > Toolbar (Figure 1).
Status Bar	To display the status bar along the bottom of the SliceView-Grid window, click View > Status Bar (Figure 1).
GPS Format	To open the Configure GPS Format dialog box, click View > GPS Format. To learn more, see GPS Format.

5.2.1 Export Image

To export any depth slice or GPR line view to the clipboard, save it as a graphics image file, or send it to a printer, click Export Image.

Export Image	*	Copy to Clipboard	$\mathrm{Ctrl}+\mathrm{C}$
Settings...		Save as File...	
Sensitivity Decrease	[]]	Save all Slices...	
Sensitivity Increase	[[]	Print ...	Ctrl +P

Use the following table as a guide to working with the Export Image menu:

Item Description

Copy to Clipboard	Click Copy to Clipboard to copy the depth slice or GPR Line image in the active window to the clipboard for pasting into other documents.

Item	Description
Save as File	To save an electronic copy of the image in the active window: 1. Click Save as File. 2. In the Save File dialog box, navigate to the folder you want to save the image in. 3. In the File name field, enter a name for the file. 4. In the Save as type drop-down list, select the graphics format file type. 5. Click Save.
Save all Slices	To save an electronic copy of all depth slice images in the active window: 1. Click Save All. 2. In the Save File dialog box, navigate to the folder you want to save the image in. 3. In the File name field, enter a name for the file. 4. In the Save as type drop-down list, select the graphics format file type. 5. Click Save.
Print	To print a hard copy of the image click Print.

5.2.2 Settings

The Settings option allows you to change how GPR line and depth slice images are displayed through color palettes, line, scale and cursor colors, contrast, and sensitivity values.

You can access the Settings option from the menu bar or the toolbar.

5.2.2.1 Slice Settings

a. In the menu bar, click View > Settings to adjust the slice image color palette, line, scale and cursor colors, contrast, and sensitivity values of GPR line and slice images.
Alternatively, in the toolbar click 1 ใ \downarrow.
The Slice Settings dialog box opens:

Use the following table as a guide to working with the Slice Settings dialog box:

Item	Description
Slice	Click Slice to open the Depth Slice Settings dialog box.
GPR Line	To open the GPR Line Settings dialog box, click GPR Line. To learn more, see GPR Line Settings.
Mixed, \mathbf{X}, \mathbf{Y}	Select Mixed, \mathbf{X}, or \mathbf{Y} as a grid data collection method option. To learn more, see Lines in Depth Image Slice..
Color Palette	To change the depth slice image color, click the Color Palette drop-down list. To learn more, see Slice Color Palette..

Item	Description
Sensitivity	Move the Sensitivity slider to increase or decrease the sensitivity of the image to small signal variations. Alternatively, enter a percentage number into the Sensitivity text box. To learn more, see Sensitivity.
Contrast	Move the Contrast slider to increase or decrease the contrast of the image to small signal variations. Alternatively, enter a percentage number into the Contrast text box. To learn more, see Contrast.
Cursor	To change the color of the grid line indicating the position, within the grid, of the current GPR Line displayed in the GPR Line window, click Cursor. To learn more, see Cursor Color.
Lines	To change the color of lines corresponding to the GPR lines collected during the grid survey, click Lines. To learn more, see Lines Color.
Scale	To change the color of the scale grid lines, click Scale. To learn more, see Scale Color.
Defaults	Click Defaults to revert the settings to their default values.
Preview	To display the effects of the slice setting change before applying them, click Preview.
OK	Click OK to apply your changes. Click Cancel to close the Settings dialog box; all changes will be lost.
Cancel	Select Auto Preview to see the effect of changes made to the settings, including Sensitivity, Contrast and the Color Palette.
Auto Preview	

5.2.2.1.1 Generating Depth Slices with GPR Lines

In the Slice Settings dialog box, select the GPR Lines used to generate the depth slices; the options are: X lines only, Y lines only, or Mixed (X and Y lines).

X Grids

X-grids are areas covered by a series of parallel lines in the X direction:

In the Slice Settings dialog box, click the \mathbf{X} option to generate a depth slice using only X data lines in the grid.

The GPR Line view display only X-direction lines:

Y Grids

Y-grids are areas covered by a series of parallel lines in the Y direction:

In the Slice Settings dialog box, click the \mathbf{Y} option to generate a depth slice image using only \mathbf{Y} data lines in the grid. The GPR Line view displays only Y data lines.
Click the X or Y lines option to emphasize targets perpendicular to the line direction. In the following image, rebar are running in two directions, but the rebar parallel to the X lines have been eliminated:

Click the Y lines only option to display rebar perpendicular to the Y lines and eliminate the parallel rebar parallel.

Mixed Grids

Mixed grid areas are covered by lines in both the X and Y directions

In the Slice Settings dialog box, click Mixed to generate depth slice images based on both X and Y lines.
The GPR Line view displays an X line or a Y line

5.2.2.1.2 Slice Color Palette

In the Settings dialog box, click the Slice Color Palette drop-down to select depth slice image colors from a predefined color palette. Experiment with the palette to determine the best colors for the selected grid scan data set. The default color palette for slices is jet.

5.2.2.1.3 Sensitivity

The Sensitivity settings control how sensitive an image is to small signal variations. Sensitivity values range from 0 to 100%, least sensitive to most sensitive (default 100\%).

Before changing a sensitivity value, make sure that the depth slice image you want to change is in the active window.

To adjust sensitivity move the slide left to decrease sensitivity and right to increase sensitivity:

You can also adjust sensitivity from the menu bar and toolbar:
Increase Sensitivity

- To increase sensitivity by 5% increments, in the Menu bar, click View > Sensitivity Increase.
- To increase sensitivity by 5% increments, in the Toolbar, click the sensitivity increase icon.
- To increase sensitivity by 10% increments, press Shift while clicking the menu or toolbar.
- To increase sensitivity by 10% increments, press Ctrl while clicking the menu or toolbar.

Decrease Sensitivity

Decreasing sensitivity widens the color palette around the zero signal level, removing weaker signals in the image so only the strongest signals are visible.

- To decrease sensitivity by 5% increments, in the Menu bar, click View > Sensitivity Decrease.
- To decrease sensitivity by 5% increments, in the Toolbar, click the sensitivity decrease \% icon.
- To decrease sensitivity by 10% increments, press Shift while clicking the menu or toolbar.
- To decrease sensitivity by 10% increments, press Ctrl while clicking the menu or toolbar.

Depth Slice Images

Depth Slice signals vary from zero to extreme positive values. As sensitivity decreases, the color associated with the zero signal level on the left side of the color palette widens to the right resulting in the weaker signals being removed from the image.

Sensitivity default 100\%

Sensitivity 50\%

5.2.2.1.4 Contrast

The Contrast setting enables you to control how much of the image area is at the extremes of the color palette. Contrast ranges from 0 to 100%, less contrast to more contrast (default 0\% no added contrast).
Before changing contrast values, make sure the depth slice image you want to change is the active window.

Contrast Increase

- To increase contrast by 5% increments, in the Menu bar, click View > Contrast Increase.
- To increase contrast by 5% increments, in the Toolbar, click increase contrast \mathbf{O} icon.
- To increase contrast by 10% increments, press Shift while clicking the menu or toolbar.
- To increase contrast by 10% increments, press Ctrl while clicking the menu or toolbar.

Contrast Decrease

- To decrease contrast by 5% increments, in the Menu bar, click View > Contrast Decrease.
- To decrease contrast by 5% increments, in the Toolbar, click the decrease contrast icon.
- To decrease contrast by 10% increments, press Shift while clicking the menu or toolbar.
- To decrease contrast by 10% increments, press Ctrl while clicking the menu or toolbar.

As contrast increases, more data is displayed at the extreme value of the color palette. Contrast helps make weak targets more visible in the image.

Depth Slice Images

Depth Slice signals vary from zero to extreme positive values. As contrast increases, the color associated with the extreme positive signal level on the right side of the color palette widens to the left, resulting in the weaker signals appearing stronger in the image.

Contrast default 0

Contrast 50 \%

5.2.2.1.5 Cursor Color

Cursor Lines are colored lines indicating

- The position of the GPR Line displayed in the GPR Lines view in the grid displayed in the Depth Slice view (Figure 5).
- The thickness range of a depth slice is indicated by two parallel lines superimposed on the GPR Line image (Figure 4).

Figure 4: Slice Cursor line and Scale Grid
a. To change the line color, in the Settings dialog box, click Cursor.

In the Color dialog box, select a color that provides high cursor line visibility on the depth slices and GPR Lines.
Click OK.
The GPR Line Cursor Line in the depth slice view is not visible if the Show Collected Lines option has been turned off.

Figure 5: GPR line cursor line

5.2.2.1.6 Lines Color

Lines corresponding to all the GPR lines collected during the grid survey can be displayed in the Depth Slice view.
This option is only available if the Depth Slice view is the active window.
a. To change Line Color, in the Settings dialog box, click Lines.
b. In the Color dialog box, select a line color that provides high line visibility on the depth slices.
c. Click OK.

5.2.2.1.7 Scale Color

Scale Grid Lines correspond to major position and depth labels can be superimposed on the depth slice and the GPR Lines.

The Show Scale Grid option only applies to the image in the active window.
a. To change Scale Color, in the Settings dialog box, click Scale.
b. In the Color dialog box, select a line color that is visible on the image.
c. Click OK.

5.2.2.2 GPR Line Settings

a. Click View > Settings to adjust the GPR Line color palette, line, scale and cursor colors, contrast, and sensitivity values of GPR line and slice images.
Alternatively, in the toolbar click ${ }^{9}{ }^{1} \phi$.
The GPR Line Settings dialog box opens:

Use the following table as a guide to working with the GPR Line Settings dialog box:

| Item | Description |
| :--- | :--- | :--- |
| GPR Processing | To select the type of processing to apply to the current active GPR line
 image, click the GPR Processing drop-down list.
 To learn more, see GPR Processing. |
| Color Palette | To change the GPR Line color, click the Color Palette drop-down.
 To learn more, see $\underline{\text { Color Palette. }}$ |
| Sensitivity | Move the Sensitivity slider to increase or decrease the sensitivity of the
 image to small signal variations.
 Alternatively, enter a percentage number into the Sensitivity text box.
 To learn more, see Sensitivity. |
| Contrast | Move the Contrast slider to increase or decrease the contrast of the image
 to small signal variations.
 Alternatively, enter a percentage number into the Contrast text box.
 To learn more, see Contrast. |

Item	Description
Cursor	To change the color of the depth lines superimposed on the GPR Line view indicating the depth range of the depth slice displayed in the Depth Slice view, click Cursor. To learn more, see Cursor Color.
Scale	Click Scale to change the color of the scale grid lines. To learn more, see Scale Color.
Depth Limit	Depth Limit enables you to change the maximum depth displayed on GPR line images. To learn more, see Depth Limit.
Gain	Gain "amplifies" the strength of the GPR data signals in the GPR line images. To learn more, see Gain.
Defaults	Click Defaults to revert the settings to their default values.
Preview	To display the effects of the slice setting change before applying them, click Preview.
OK	Click OK to apply your changes.

5.2.2.2.1 GPR Processing

Advanced users who understand GPR Processing routines, such as Dewow, background subtraction, migration, and enveloping can use this feature to apply processing to a GPR Lines.
a. To access the GPR Processing type, in the Settings dialog box, click the GPR Processing drop-down list.
Select a processing routine.

```
Dewow + Bgr. Subtraction + Gain (Recommended)
Raw Data
Dewow
Dewow + Bgr. Subtraction
Dewow + Bar. Subtraction + Gain (Recommended)
Dewow + Bgr. Subtraction + Migration
Dewow + Bgr. Subtraction + Migration + Envelope
Dewow + Bgr. Subtraction + Migration + Envelope + Amplitude Equalization
Depth Slice Processing
```

- The recommended and default GPR Processing option is Dewow + Bgr. Subtraction + Gain.
- To display the GPR Lines with the same processing as the depth slices, click Depth Slice Processing.
Contrast, Sensitivity and Gain are locked to the GPR Line settings dialog and cannot be changed in the Slice Settings dialog.
To learn more, see Data Processing.

5.2.2.2.2 GPR Line Color Palette

Click the GPR Line Color Palette to select the color palette you want the GPR Lines to use. One color palette may best highlight the features in a data set, so experiment with the palettes to determine the best color palette for a particular data set.

bone.cmp
autumn.cmp
bone.cmp
CnG.cmp
cool.cmp
copper.cmp
default.cmp
flag.cmp
grey.cmp
greyR.cmp
hot.cmp
hsv.cmp
jet.cmp
pink.cmp
prism.cmp
RedGreyBlue.cmp
seismic.cmp
spring.cmp
summer.cmp
winter.cmp

The default color palette for GPR line images is bone.

5.2.2.2.3 Sensitivity

The Sensitivity settings control how sensitive an image is to small signal variations. Sensitivity values range from 0 to 100\%, least sensitive to most sensitive (default 100\%).
Before changing a sensitivity value, make sure that the GPR line image you want to change is in the active window.
To adjust sensitivity move the slide left to decrease sensitivity and right to increase sensitivity:

You can also adjust sensitivity from the menu bar and toolbar:

Increase Sensitivity

- To increase sensitivity by 5% increments, in the Menu bar, click View > Sensitivity Increase.
- To increase sensitivity by 5% increments, in the Toolbar, click the sensitivity increase icon.
- To increase sensitivity by 10% increments, press Shift while clicking the menu or toolbar.
- To increase sensitivity by 10% increments, press Ctrl while clicking the menu or toolbar.

Decrease Sensitivity

Decreasing sensitivity widens the color palette around the zero signal level, removing weaker signals in the image so only the strongest signals are visible.

- To decrease sensitivity by 5% increments, in the Menu bar, click View > Sensitivity Decrease.
- To decrease sensitivity by 5% increments, in the Toolbar, click the sensitivity decrease \% icon.
- To decrease sensitivity by 10% increments, press Shift while clicking the menu or toolbar.
- To decrease sensitivity by 10% increments, press Ctrl while clicking the menu or toolbar.

GPR line Images

GPR line signals vary from extreme negative values to extreme positive values with the zero signal in the middle. As sensitivity decreases, the color associated with the zero signal level widens resulting in the weaker signals being removed from the image.

Sensitivity default 100\%

Sensitivity 80\%

5.2.2.2.4 Contrast

The Contrast setting enables you to control how much of the image area is at the extremes of the color palette. Contrast ranges from 0 to 100%, less contrast to more contrast (default 0\% no added contrast).
Before changing contrast values, make sure the GPR Line image you want to change is the active window.

Contrast Increase

- To increase contrast by 5% increments, in the Menu bar, click View > Contrast Increase.
- To increase contrast by 5% increments, in the toolbar, click increase contrast icon.
- To increase contrast by 10% increments, press Shift while clicking the menu or toolbar.
- To increase contrast by 10% increments, press Ctrl while clicking the menu or toolbar.

Contrast Decrease

- To decrease contrast by 5% increments, in the Menu bar, click View > Contrast Decrease.
- To decrease contrast by 5% increments, in the toolbar, click the decrease contrast ${ }^{-}$icon.
- To decrease contrast by 10% increments, press Shift while clicking the menu or toolbar.
- To decrease contrast by 10% increments, press Ctrl while clicking the menu or toolbar.

As contrast increases, more data is displayed at the extreme value of the color palette. Contrast helps make weak targets more visible in the image.

GPR Line Images

GPR line signals vary from extreme negative values to extreme positive values with zero in the middle. As contrast increases, the colors associated with the high positive and negative signal levels at the ends of the color palette widen resulting in the weaker signals appearing stronger in the image.

Contrast default 0

Contrast 50

5.2.2.2.5 Cursor Color

Cursor Lines are colored lines indicating

- The position of the GPR Line displayed in the GPR Lines view in the grid displayed in the Depth Slice view (Figure 5).
- The thickness range of a depth slice is indicated by two parallel lines superimposed on the GPR Line image (Figure 4).

Figure 6: Slice Cursor line and Scale Grid
a. To change the line color, in the Settings dialog box, click Cursor.

In the Color dialog box, select a color that provides high cursor line visibility on the depth slices and GPR Lines.
Click OK.
The GPR Line Cursor Line in the depth slice view is not visible if the Show Collected Lines option has been turned off.

5.2.2.2.6 Scale Color

Scale Grid Lines correspond to major position and depth labels can be superimposed on the depth slice and the GPR Lines.

The Show Scale Grid option only applies to the image in the active window.
b. To change Scale Color, in the Settings dialog box, click Scale.
c. In the Color dialog box, select a line color that is visible on the image.
d. Click OK.

5.2.2.2.7 GPR Line Depth Limit

Use Depth Limit to change the maximum depth displayed on GPR line images.
To access Depth Limit, in the Settings dialog box select a depth limit setting.

Depth Limit	
O Max	4.31 ft
User	
Slice Depth Limit	

- Max: Displays the full depth range of GPR line data (default setting).

- User: Select User to enter the maximum depth value to display in the GPR line image in the ft. text box.

- Slice Depth Limit: Select Slice Depth Image to enter a multiplication factor for the Slice Depth Limit.

For example, a multiplication factor of two sets the GPR Line depth limit to twice the current slice depth limit. A multiplication factor of 0.5 zooms the slice depth limit to only show the shallow data in the GPR Line view.

Setting the Depth Limit to a value larger than the maximum GPR line depth displays the full depth and time axes of the GPR line, but data below the maximum depth will be blank.

Note: Use Depth Limit only to display GPR Lines. If the depth limit setting is less than the maximum depth, it does not limit the GPR Line data used for generating depth slices.
Depth slices deeper than the depth limit are still visible, but the slice cursor lines on the GPR line that define the thickness of the depth slice fall off the bottom of the GPR line as you scroll down through the depth slices.

To learn how to limit the maximum data depth to generate depth slices, see the Slice Depth Limit.

5.2.2.2.8 Gain

Gain enables you amplify the strength of the GPR data signals in the GPR line images (similar to adjusting the volume knob on a radio). Gain is only applied to the GPR line image display; changing gain has no effect on depth slice images.
a. To add Gain to GPR Processing, in the Settings dialog box, select the Gain checkbox.

\square Gain	
(O) Auto ○ Level $1 \quad 1.25$	
Start Gain:	
Attenuation: $(\mathrm{dB} / \mathrm{m})$	0.99
Maximum Gain:	9.43

Select the Auto, Level or User option.

- Auto uses the average decay curve of the GPR signal strength over time to calculate an appropriate gain parameter values for attenuation, maximum gain and start gain. If the GPR line images are properly gained using the Auto gain setting, use it.
If an Auto gain does not gain the GPR line properly, try using the gain Levels.

Level uses 12 pre-defined settings for Start Gain, Attenuation and Maximum Gain (see details below) that increase from a low gain at 1 to a high gain value at 12. Typically one of these 12 settings applies a suitable gain to the GPR line. If not, select a gain level that is close and then switch to a User and modify the gain parameters (see below) until the gain is the best.

The gain level is changed in this dialog but can also be changed using the Gain Level dropdown list and the Gain Level increase or decrease buttons on the Toolbar. Note that the gain is applied to the data in the currently selected window, either the GPR line or the Depth Slice window.

This makes it easy to quickly scroll through several pre-set gain levels and find one that makes the GPR line look the best.

- User allows the 3 gain parameters to be manually set:
- Start Gain: In the Start Gain text box, enter the zero depth value at the top of the GPR line. Start Gain values are usually 1 to 3 (1 default).
- Attenuation: To learn more, see Attenuation.
- Maximum Gain: In the Maximum Gain text box, enter a value between 20 and 1000 (500 default).
Maximum Gain is the highest multiplication factor that can be applied to GPR line data.
Attenuation stops increasing once it reaches Maximum Gain.
Since the strongest GPR signals are returned from shallow targets at the top of the GPR line, the gain applied to the GPR lines increases with increasing depth.
Gain begins with the Start Gain value at the top of the GPR line, increases at a rate defined by the Attenuation value, and levels off to a constant multiplier when the Maximum Gain value is reached.

The following image displays a GPR line image with the gain function shape and parameters on the right.

In most cases, Start Value is 1 to 3 , Attenuation (a), which controls steepness, is 0.5 to 50 , and Maximum Gain, which cuts off the exponential rise, is 20 to 1000. To avoid over-gaining data, start with low attenuation and maximum gain values and increase as necessary.

Attenuation

Attenuation values define the steepness value of the gain. Lower values result in a more gradual slope, while higher values produce steeper slopes. The ramp rises from the Start Gain value up to the Maximum Gain value.

A low attenuation value produces a clear GPR line image

High attenuation values overgain data producing an unclear image
a. To select an attenuation value, in the Gain pane, click the User option.

In the Attenuation drop-down list, click a value between 0.0 and 50.0.
You can enter another value into the text box.
Attenuation values apply gain to the GPR lines in the same way that the Amplitude Equalization Gain value applies gain to the slices. When you find an attenuation value the produces clear GPR line images that are not over-gained, you can apply the same gain value to User Amplitude Equalization to produce quality depth slice images.

5.2.2.3 Apply Default to Contrast Sensitivity

To apply the default contrast and sensitivity values to the active window, in the menu bar, click View > Apply Default to Contrast Sensitivity.

5.2.3 Zoom

Use Zoom to increase or decrease the size of the depth slice or GPR line image in the active window.

To access Zoom, in the menu bar, click View > Zoom.

| Zoom | Fit to Window |
| :--- | :--- | :--- |
| Select Area | |
| Out | |
| In | |

There are four Zoom options:

Option	Description
Fit to Window	To zoom to the full grid size, click View > Zoom > Fit to Window.
Select Area	1. To zoom in to a specific area of the slice or GPR line, click View $>$ Zoom > Select Area. 2. Draw a box around the area you want to zoom in on. 3. Click the magnifying glass) icon.
Out	To zoom out of the current image size, click View > Zoom > Out.
In	To zoom into the current image size, click View > Zoom > In.

After zooming into an image, scroll bars appear on the bottom and right edge of the image.

Use the scroll bars to move around the image and view different areas. The scroll bar narrows each time the image is zoomed-in to indicate that a smaller percentage of the full image range is displayed.
A zoomed-in image still displays X and Y scales. The image may show more data than defined by the box because the additional data will be added to the right or bottom of the image so it always retains the correct aspect ratio.

5.2.4 Pan

Click Pan to move images around a zoomed-in image; in Pan Mode the cursor displays a hand icon (${ }^{\text {sin }}$). You can click and drag data images to a new location. As the image is dragged, a dashed box outlining the current viewed image is formed. The image will move to the location of this dashed box.
To exit Pan mode, click View > Pan.

5.2.5 Show Collected Lines

To superimpose lines onto the depth slice image to display where a grid's data lines were collected, click Show Collected Lines.

Use this feature when a partial grid or partial lines were collected in a survey to avoid having to interpret a target in an area where no data was collected.

Show Collected Lines

Disable Show Collected Lines

5.2.6 Show Scale Grid

To superimpose a grid of dashed lines onto the depth slice or GPR Line view, in the Menu bar click View > Show Scale Grid.

Horizontal and vertical grid lines appear at major positions and depths as indicated on the position and/or depth scales.
In normal operation the scale grid is turned off to remove clutter from the image. Turn the grid scale on to display more detailed positioning information to assist with the interpretation.
With Scale Grids:

Without Scale Grids:

5.2.7 Show Flags/Fiducials

Flags/Fiducials are markers and/or comments added during data acquisition at specific trace positions along the line.

To enable Flags/ Fiducials, click View > Display Flags/Fiducials.
The following image displays a number of fiducial markers highlighted red:

If your older GPR system does not write fiducials to the GFP file created during grid data collection, use the GFP_Edit utility program to import fiducials separately into the GFP file.
If the grid contains Flags/Fiducials on any data lines, they are automatically displayed on the image in the Depth Slice View when Show Collected Lines is enabled. The flags/fiducials appear as small squares on the line.
To turn flags/fiducials on or off, click View > Display Flags/Fiducials.
The following image displays flag/fiducial markers as little squares on the depth slice view image.

5.2.8 GPS Format

If the GPR data file contains GPS data, GPS information is displayed on the Status Bar. The format of the GPS information displayed is controlled by the GPS the GPS Format dialog box.
a. To open the GPS Format dialog box click View > GPS Format.

5.2.8.1.1 Latitude/Longitude

b. Select the Latitude/Longitude checkbox to enable the Latitude/Longitude pane.
a. Select to display Latitude/Longitude in Degrees Minutes Seconds ($\mathbf{D}^{\circ} \mathbf{M "}^{\prime \prime} \mathbf{S "}^{\prime \prime}$) or Decimal Degrees.
b. In the Show Hemisphere Location at drop-down list, select one of the following options:

- Do not show
- Positive/Negative

Displayed as a plus (+) sign when latitude is in the Northern hemisphere or Longitude is in the Eastern Hemisphere.
Displayed as a minus (-) sign when latitude is in the Southern hemisphere or Longitude is in the Western Hemisphere.

- Letter

For latitude, "N" for North or "S" for South. For Longitude, "E" for East or "W" for West.

- Word

For latitude, "North" or "South". For Longitude, "East" or "West" The current GPS output is displayed in the Sample GPS Output field.

5.2.8.1.2 UTM

c. Select the UTM (Universal Transverse Mercator) checkbox to enable the UTM pane.

From the Using Reference Ellipsoid dropdown list, select an option. The default is WGS-84.

- Click the Show UTM Letter Designator option to display the letter designator.
- Click the UTM Zone Number option to display the zone number.

The current GPS output is displayed in the Sample GPS Output field.
Click OK.

5.3 Navigation

Navigation

Slice: Up
Slice: Down
Line: Up [Up Arrow]
Line: Down
Line: Left
Line: Right

5.3.1 Slice Up or Slice Down

Stepping Up or Down through depth slices provides insight into the depth of various features in the three dimensional volume.

- Click Slice Up () to scroll up through the depth slice image by single depth slice increments.
- Click Slice Down $\left({ }^{(\sqrt{x})}\right)$ to scroll down through the depth slice image by single depth slice increments.
When the highest or lowest depth slice is reached, the depth slice image does not change.
If the GPR Line View is open, as you move through the slices in the depth slice view, the slice cursor lines on the GPR line image move up or down corresponding to the depth slice image.

5.3.2 Line Up or Line Down

If you collected X-lines to generate a depth slice image (see Lines in Depth Slice Image) and a GPR Line view is open, click Line Up $(\bar{\Delta})$ or Line Down $(\stackrel{\nabla}{\square})$ to move through the X-GPR line one image at a time.

If the Show Collected Lines option is enabled, a horizontal cursor line corresponding to the grid position of the current X -line is displayed on the slice image on the depth slice view.

As the X-line GPR line image changes, the grid cursor line on the depth slice image moves to a new position corresponding to the new X -line.

You can switch the GPR Line View from X lines to Y lines by clicking an option under Line Left and Line Right.

These buttons are active when selecting an X line for Hyperbola Velocity Calibration.

5.3.3 Line Left or Line Right

If you collected Y-lines to generate the depth slice image (see Lines in Depth Slice Image) and a GPR Line View is open, you can move through the Y-lines one at a time using the Left Arrow (| ${ }^{\mid 4}$) and Right Arrow \mid (
If the Show Collected Lines option is enabled, a vertical Cursor Line (Figure 5) corresponding to the grid position of the current Y line will be displayed on the depth slice image. As the Y line image changes, the cursor line on the depth slice image moves to a new position corresponding to the new Y line.
These buttons are active when selecting any Y line for Hyperbola Velocity Calibration.

5.4 Tool

Tool

Data Processing...

Hyperbola Velocity Calibration
Measure

5.4.1 Data Processing

Use the Data Processing dialog box to set the parameters for the processing depth slice images.
To access Data Processing, in the menu bar click Tool > Data Processing.
Alternatively, from the toolbar, click ${ }^{2}$:

Slices produced in SliceView-Grid display GPR signal amplitude versus XY position. Amplitude value is the average amplitude value over the depth or time thickness. Data processing processes such as Dewow, Migration, Background Subtraction, and Envelope affect the original amplitude.

5.4.1.1 Data Position Limits

Data Position Limits define the positions at the edges of the depth slice image. This setting always defaults to the Outer positions, so a depth slice is generated that includes all the available data. You can select other settings such as Clipped, Inner, or User to define other grid dimensions.

5.4.1.1.1 Outer

Select this option to apply Outer data position limits to a grid when you want the longest lines in the X and/or Y direction to define the size of the grid, so the depth slice generated is the largest possible and uses all the available data in the grid.

GPR lines that are shorter than the longest lines are padded with zero data so all lines are the same length.
For example, if all the lines are 10 m long except one in the X direction that is 10.5 m and another in the Y direction that is 10.2 m long, the grid size plotted in the depth slice will be $10.5 \times 10.2 \mathrm{~m}$.

5.4.1.1.2 Clipped

It is common to collect GPR lines that are longer than the grid dimensions; this allows operators to overshoot the end of the grid without having to try and stop the line exactly at the end position. Each GPR line is typically a slightly different length.
Select the Clipped data position limit to crop the grid using the first and last lines in X and Y directions; GPR lines that extend outside the defined grid are cut off. .

Clipped data limit is not available if you have only X -lines or Y -lines, (no Y -lines to clip the X lines and vice versa).

5.4.1.1.3 Inner

Select the Inner data position limit for the grid when the shortest lines in the X and/or Y direction define the size of the grid so the grid contains solid data with no zero data padding. Use this option when one or more GPR lines exceed the desired size of the grid and you want to truncate those lines and display a grid with no zero data padding.

For example, if all the lines are 10 m long, except one in the X direction that is 10.5 m long, and another in the Y direction that is 10.2 m long, the grid size plotted in the depth slice will be 10 x 10 m .

5.4.1.1.4 User

Select the User data position limit when you can define the minimum X, maximum X, minimum Y, and maximum Y positions for the grid. GPR lines are truncated and/or padded with zero data to fit the defined grid size.

5.4.1.2 Units

Distance and depth units displayed on the axes around the depth slice and GPR line images can be displayed in meters or feet.
Use this feature to convert and display the units default used during grid data collection from meters (m) to feet (ft .).

5.4.1.3 Background Subtraction

Horizontal events associated with direct air waves and the direct ground waves are displayed at the top of all GPR lines. These events are not reflections from within the ground and should be removed from the data before generating depth slice images.

Use background subtraction to remove these events and other horizontal reflectors in the GPR lines.

The background subtraction filter defaults to on, but can be turned off by unchecking this option. Turn off background subtraction when you are exporting geological data to 3D (Export Data).

5.4.1.3.1 Total Background

Use Total Background to calculate the average trace for the entire grid survey and then subtract it from every trace in the survey. This process removes the direct air and ground waves on the top of the data to improve the very shallow depth slice images.

Before Total Background Subtraction

After Total Background Subtraction has been applied

This filter is most effective when the air wave and/or ground wave events are fairly constant throughout the grid of GPR lines. If the surface varies in composition or water content, the ground wave event will vary in amplitude and time; using total background subtraction may not remove the events satisfactorily on all GPR lines. In this case, using a Local Background Subtraction filter may be more effective.

5.4.1.3.2 Local Background

When using Local Background, an average trace in a user defined window width is calculated and subtracted from the trace in the center of the window. The window is then moved over one trace and the process is repeated. This type of filter is called a running average background subtraction filter.

This background subtraction filter is effective for removing local flat-lying events in the data such as, varying wave events or localized banding on one GPR line in the grid.

Before Local Background Subtraction

After Local Background Subtraction

To determine an appropriate window width for the local background subtraction filter, scroll through the GPR lines in your grid and determine the length of the shortest flat-lying reflection that you want removed from the data. Start with a value of 1 meter (3 feet) and modify up or down as necessary to improve the depth slice images.

Caution: Be careful when using short distances for Local Background Subtraction as these can result in the removal of a significant amount of data.

5.4.1.4 Signal Velocity

An accurate signal velocity is necessary for creating good depth slice images. A poor velocity value may result in fuzzy images that are difficult to interpret and result in inaccurate depth estimates. Velocity defaults to a typical average velocity of $0.10 \mathrm{~m} / \mathrm{ns}$ or 0.328 ft ./ns.
You can enter a velocity into the Signal Velocity field in the units displayed (meters per nanosecond m / ns, or feet per nanosecond ft ./ns).
a. To display a list of typical signal velocities, in the Data Processing dialog box, beside Signal Velocity, click?.

SliceView				
	The signal velocity is used to calculate the depth of events, and for data processing (such as Migration). Inaccurate signal velocity will give inaccurate depth measurements, and Slice images.			
	For GPR (Ground Penetrating Radar) applications the signal velocity usually is in the range of 0.08 to $0.12 \mathrm{~m} / \mathrm{ns}$ (0.26 to $0.4 \mathrm{ft} / \mathrm{ns}$). There are several ways to estimate the signal velocity, such as hyperbola velocity estimate. Please see manual for details.			
	In the absence of information to base a velocity estimate on, a velocity of $0.1 \mathrm{~m} / \mathrm{ns}(0.33 \mathrm{ft} / \mathrm{ns})$ may serve as a starting point. However, the accuracy of such an assumption should be verified or event depths (and data processing) will be inaccurate!			
	The following are some typical signal velocities observed in common geological materials (your values will most likely be somewhat different):			
	Material	$\mathrm{v}(\mathrm{m} / \mathrm{ns})$	v (ft/ns)	
	Air ${ }^{\text {Distilled Water }}$	${ }_{0}^{0.3}$	0.98	
	Fresh Water	0.033	0.11	
	Sea Water	0.01	0.03	
	Dry Sand	0.15	0.49	
	Saturated Sand	0.06	0.20	
	Limestone	0.12	0.39	
	Shales	0.09	0.30	
	Silts	0.07	0.23	
	Clays	0.06	0.20	
	Granite	0.13	0.43	
	Dry Salt	0.13	0.43	
	Ice	0.16	0.52	
	© 2013 Sensors \& Software Inc. All rights reserved.			
				OK

Record the velocity for the material you are scanning.
Click OK.
In the Data Processing dialog box, in the Signal Velocity field enter the material velocity Click OK.

5.4.1.5 Slice Processing

Use Slice Processing to select the type of processing to apply to the current active slice before it is displayed.
Slice Processing defaults to on. If you do not want to perform slice processing, de-select the Slice processing checkbox. Turn this option off when you want to display GPE lines from a grid. For example, trying to determine the best slice processing options for a large grid when you know that slice processing will take a substantial period of time.

5.4.1.5.1 Slice Units

The Slice Units setting determines which units of measurement will be used for the slice thickness parameter: depth in meters or feet, or time in nanoseconds.
The Slice Units defaults to depth in the same units that the data were collected in, i.e. meters or feet, but these units can be changed (to learn more, see Units).

5.4.1.5.2 Slice Resolution

The smallest unit (box) of solid color in a depth slice image is called a pixel or a sample. Slice Resolution defines the physical size of the sample in a depth slice image. Decreasing the sample size increases the total number of samples and, as a result, the details of the images. However, Slice Resolution can also increase the time required to process and display the image. Increasing the sample size decreases the total number of samples and data processing time but results in increasingly fuzzier images.

Depth slices with a very small sample size are very detailed but take longer to process.
Slice Resolution defaults to an appropriate value based on the step size (the distance between traces during data collection) and the screen resolution. Slice resolution can be changed but not made finer (smaller) than the smallest step size in the data. A coarser (larger) resolution value results in faster data processing.
The Depth Slice View Legend displays the current slice resolution value and the total number of samples in the X and Y directions. To change the slice resolution value, enter a new value or use one of the four resolution values from the drop-down list (low, medium, high, and max).
Changes in slice resolution have the most effect on large grid data sets. It is a good practice to set slice resolution to a coarse value at first and then make sure that the depth slices generated are what you expect before proceeding with a finer sample size that takes longer to process.

5.4.1.5.3 DME Processing

DME (Dewow, Migration, and Enveloping) is a standard GPR data processing stream that is typically applied to the GPR lines before generating depth slice images. DME is generally for advanced users who understand these GPR data processing routines.

The default setting (recommended for novice users) is all processes checked so that they are performed before generating the depth slice images.

The processes selected in this option affect the number of processing streams available in the GPR Processing in the GPR Line Settings drop-down list. For example, if the Migration process is not selected, then the GPR processing streams listed will not include Migration.
Turn off DME (uncheck) when you have processed grid data in some other program (such as EKKO_Project) and just want to use SliceView-Grid to display the data. In this case, Turn off Background Subtraction as well as. If grid data was gained you should also turn off Amplitude Equalization Gain.
Review the DME settings when exporting geological data to 3D. It may look better in 3D without the Migration and Enveloping processes (see Export Data).

Dewow

Depending on the proximity of the transmitter and receiver, as well as the electrical properties of the ground, the transmit signal may induce a slowly decaying low frequency (wow) on the trace which is superimposed on the high frequency reflections.
The Dewow process (also called the Signal Saturation Correction) removes this unwanted low frequency while preserving the high frequency.

Raw data line containing the low frequency wow component - before Dewow

The same data line after Dewow removes the low frequency wow component

Wow is removed from the data by running a high pass average filter on each trace. A window with a width the same as that of one pulse width at the nominal frequency is set on the trace. The average value of all the points in this window is calculated and subtracted from the central point. The window is then moved along the trace by one point and the process is repeated.

While any filter produces unwanted artifacts in the data to which it is applied, Dewow has been optimized after many experiments over many years to reach a satisfactory compromise filter.

The Dewow process is highly recommended when data processing GPR lines and depth slices.

Migration

Targets in the subsurface often generate hyperbolic responses on a GPR line. A hyperbola is the result of the wide beam-width inherent in most GPR systems.

The target is located at the apex, or top of, the hyperbola. Migration focuses the energy spread over the hyperbolic shape back to the apex of the hyperbola- the actual location of the object. This is an essential and highly recommended part of the data processing when generating depth slices. Migration allows linear targets viewed on depth slice images to appear as linear objects rather than hyperbolic shapes that make interpretation difficult.

Migration requires an accurate Signal Velocity value. If the velocity value is too low or too high, hyperbolic reflectors will not be focussed back to a point and the target will have fuzzy edges in the depth slice.

Migration defaults to on and is highly recommended for most grid data sets, but the user can turn the migration process off by unchecking the checkbox.

There are two types of migration available in SliceView: F-K Migration and Kirchhoff Migration.
The F-K migration applies a synthetic aperture image reconstruction process to the GPR line. The GPR data are Fourier-transformed into plane waves at a monochromatic frequency. The waves are then processed individually to superimpose the energy at source point. This transformation was devise by R.H. Stolt (Geophysics, Vol 43 1978, p 23-48) and is often called Stolt migration.

The Kirchhoff migration processes the data in its original space and travel time form and is more intuitive. The Kirchhoff migration sums along a hyperbolic trajectory for a given velocity and places that energy at the apex of the hyperbola. This concept is readily understood from examining GPR records with localized point targets. The point target response results in energy lying on hyperbolic trajectory in space-time cross sections. The Kirchhoff summation approach
essentially takes all the energy along a given hyperbola, sums it up and places it at the apex of the hyperbola which is the location of the source.
There are two parameters available for the Kirchhoff Migration:
Width: Window width used for summing along the hyperbolic trajectory. Default value is calculated based on the GPR line parameters and used during the migration processing.

If not using the default, the value is in feet or meters, depending on the units the GPR line was collected in.

Target Type: Type of target being imaged to optimize the gain for amplitude normalization. The options are: $0=$ All Targets, $1=$ Point Targets, 2=Rod/Cylinder-targets, and 3=Planar Targets. The default is $0=A l l$ Targets.

Envelope

Enveloping a trace converts it from a signal with both positive and negative components to a signal with all positives. The process removes the oscillatory nature of the radar wavelet and shows the data in its true resolution.

In the following graphic, the top image shows the original trace made up of positive and negative components. The middle image shows enveloping process turning negative components into positive. The bottom image shows a smooth wavelet outline.

At a single time or depth value, the amplitude value will be similar to the raw amplitude value but is always positive. Average enveloped amplitude is calculated by averaging the amplitude values over a depth or time thickness.

The following graphic shows how the enveloping process replaces the negative signal amplitudes in the raw data with positive values

Raw data with positive and negative values

Raw data with positive values

Enveloping is highly recommended when displaying depth slices. Depth slices are generated by averaging all amplitude values in the thickness range. If enveloping is not done, the positive and negative amplitudes would cancel each other out, resulting in slice images with values close to zero.

If enveloping is turned off, the data retains the negative amplitude values and the color palette becomes bipolar, which means that the colors display positive, negative, or zero amplitude data values.

5.4.1.5.4 Slice - Thickness

Slice Thickness defines the thickness of the depth slices and is indicated by the slice cursor lines on the slice image (Figure 4) in the GPR Line View.

Depth slices plot the average signal amplitude between two depths or two times. For example, a depth slice with a thickness of 0.5 feet uses the signal amplitudes in 0.5 -foot-thick 3D slabs and averages those into 2D plan images.

Conceptually, SliceView-Grid divides the data volume into slabs of equal thickness and then displays depth slice images of the average amplitude in each slab:

The default thickness value is based on the antenna frequency used for the grid survey. In general, as antenna frequency decreases and wavelength increases, the default depth slice thickness is increased.

The default value in feet is (1000/frequency) / 12 .
The default value in meters is (1000/frequency) * 0.025 .
Frequency is in MHz. For example, the default thickness for 250 MHz data is 0.33 feet or 0.10 meters.

Events with a large depth extent will be seen over several depth slices. In this case it may be possible to increase the thickness of the depth slice and still see the target. Be careful not to make the slice thickness too large, as the averaging process will reduce the amplitude of even very strong reflectors if they are averaged over too large a thickness interval.

5.4.1.5.5 Slice - Overlap

Overlap defines the percentage of overlap between depth slices. For example, an overlap of 50% means that each depth slice will overlap the depth slices above and below it by 50%. If the depth slice thickness is one foot, depth slice depth ranges would be 0.0-1.0, 0.5-1.5, 1.0-2.0, and so on.
The default setting is 0% which means there is no overlap between depth slices.
Overlap is useful for seeing a feature gradually appear and disappear as you step through several depth slices.

5.4.1.5.6 Slice Depth Limit

Depth Limit specifies the maximum depth of the data used to generate depth slice images. The depth slice depth limit is automatically set to Auto and defaults to the maximum depth in the GPR line data.
a. To change depth limit, select the User option.
b. In the text box, enter a new value that is less than or equal to the maximum depth value. If you set depth limit higher than the maximum depth, the system ignores it and uses the maximum depth value.

Reducing the depth limit decreases the number of depth slice images. This is useful when the GPR signal depth is significantly less than the maximum depth of the GPR line data. You can set depth limit to the depth of penetration so the depth slice images of the background noise signals toward the bottom of the GPR lines are not generated and displayed.

5.4.1.5.7 Slice - Interpolation Limit

SliceView-Grid generates depth slice images by interpolating data into the gaps between GPR linens. As line separation or the distance between GPR lines increases, interpolating data into the gap is less desirable as artifacts may be created in the depth slice.

The following image displays how SliceView-Grid interpolates data between GPR lines to generate a solid data set that is then displayed as depth slices.

The Interpolation Limit defines the maximum distance (in meters or feet) that data will be interpolated. If the distance between two GPR lines exceeds this limit, a gap of zero data will be left between them. The following image displays a depth slice image from a Y line data grid showing a gap with zero data where the line separation exceeded the Interpolation Limit.

This value defaults according to the data set and can usually be left as Auto. The default setting is 1.5 times the average survey line separation.
The User setting allows you to define the interpolation distance.

5.4.1.5.8 Amplitude Equalization Gain

Amplitude Equalization Gain applies a gain to depth slice data to compensate for weaker signals at depth. Use this feature to compare the relative signal strengths of targets in different depth slices.

To add Gain to GPR Processing, in the Settings dialog box, ensure the Amplitude Equalization Gain checkbox is checked.

Amplitude Equalization Gain

Auto

User

Attenuation: (dB/m)

Max Gain:

Select the Auto, Level or User option.
Auto uses the average decay curve of the GPR signal strength over time to calculate an appropriate gain parameter values for attenuation, maximum gain and start gain. If the GPR depth slice images are properly gained using the Auto gain setting, use it.
If an Auto gain does not gain the GPR line properly, try using the gain Levels.

Level uses 12 pre-defined settings for Start Gain, Attenuation and Maximum Gain (see details below) that increase from a low gain at 1 to a high gain value at 12. Typically, one of
these 12 settings applies a suitable gain to the GPR line. If not, select a gain level that is close and then switch to a User and modify the gain parameters (see below) until the gain is the best.

The gain level is changed in this dialog but can also be changed using the Gain Level dropdown list and the Gain Level increase or decrease buttons on the Toolbar.

This makes it easy to quickly scroll through several pre-set gain levels and find one that makes the GPR depth slices look the best.

The User Amplitude Equalization Gain requires three parameters: Attenuation, Start Gain, and Maximum Gain.

The strongest GPR signals come from shallow targets while deeper targets have weaker signal strength.

The gain applied to GPR data increases with increasing depth.
The following images display applying Amplitude Equalization Gain to grid data. The gain at the shallowest depth slice is set by the Start Gain. The gain increases for deeper slices set by attenuation. If the attenuation value is low, the gain increases slowly with depth. If the attenuation value is high, the gain increases quickly with depth. Gain increases until it reaches the max gain value which is the highest gain applied to the deepest slices.

The Amplitude Equalization Gain setting is only applied to the depth slice image display. Changing the gain setting has no effect on GPR line images.
The current Amplitude Equalization Gain value is displayed in the SliceView-Grid Legend.
To turn off Amplitude Equalization Gain, de-select the Amplitude Equalization Gain checkbox. Turning off Amplitude Equalization Gain generates slice images using the raw data amplitudes with no gain applied. It is not advisable to compare the signal amplitudes of targets in different slices.

To set the Amplitude Equalization Gain parameters manually, select the User option.
To set the Amplitude Equalization Gain parameters automatically, select Auto. Auto mode uses the average decay curve of the GPR signal strength over time to calculate appropriate gain parameter values for Attenuation, Maximum Gain, and Start Gain. If the resulting depth slices are not over-gained or under-gained, using Auto Amplitude Equalization Gain is acceptable.

However, Auto does not always gain data properly, especially if the data has strong, high amplitude signals deep in the section. This may result in the attenuation value being too high, resulting in over-gained data and depth slices with too many high amplitude signals which can be confusing for data interpretation. When this occurs with your data, use Auto to set the initial
values for the gain parameters and then switch the gain to User and experiment using different values.

Attenuation

The Attenuation value defines the steepness of the gain function. Lower values result in a more gradual slope, while higher values produce steeper slopes. The value slope begins at the Start Gain value and increases up to the Maximum Gain value.

Low attenuation values are typically used, but higher values may improve the imaging of deeper targets. Use the lowest value possible because data can be over-gained making it more difficult to understand.

The following images show how Amplitude Equalization applies a gain to the weaker signals at depth. If the Auto value is too low or too high, select the User option and experiment with different values that generate images with a good balance of colors.

Typical attenuation values fall between 0.0 and 20.0, but you can enter any values by selecting the User option and then entering the value into the text box.

The Amplitude Equalization Gain value applies gain to slices in the same way that Attenuation applies gain to GPR lines. Once you find an attenuation value that produces clear GPR lines images that aren't over-gained, you can use it as the attenuation value to produce quality depth slice images.

Start Gain

Start Gain is the gain value at zero depth at the top of the GPR line. Typical Start Gain values are 0 or $1 ; 1$ is the default value.

Maximum Gain

Maximum Gain is the highest multiplication factor for the GPR line data. The slope defined by the attenuation stops increasing once it has reached the maximum gain value. Typically values for the Maximum Gain are between 20 and 1000 with 500 being the default value.

5.4.1.5.9 PCD Scale

PCD Scale is the setting for the maximum value on the Power Cable Detection (PCD) scale for the PCD slice image. This option is only accessible for Conquest grid data.

Auto automatically sets the PCD scale to the maximum value found in the Conquest grid data. This value is displayed in the Slice Legend (see table in View).
User allows the user to manually set the maximum PCD scale value. This is useful for increasing or decreasing the strength of the response in the PCD slice. This option is also useful to set a single maximum value when displaying PCD slices from multiple Conquest grids in MapView.

5.4.1.6 Defaults

Click Defaults to return the Data Processing settings to their default values.

5.4.1.7 Preview

Click Preview to display the effect of changes made to the Data Processing Settings before implementing those changes.

5.4.1.8 OK

Click OK to close the dialog box and implement any changes made to the Data Processing settings processing the grid survey data and generating slice images. Depending on the changes, processing time may change.

5.4.1.9 Cancel

Click Cancel to close the Data Processing dialog box ignoring any changes.

5.4.1.10 Un-processed Data

Select the Always open this dialog when loading un-processed data checkbox to automatically open a dialog box so you can confirm that all the data processing settings, especially velocity and the slice thickness, are correct before processing the data.

5.4.2 Hyperbola Velocity Calibration

An accurate target velocity is necessary for generating the clearest depth slice images and accurately determining the depth of an object from the GPR line images.
Hyperbola Velocity Calibration allows you to calculate a velocity value using hyperbola fitting. In hyperbola fitting you fit a typical response curve (hyperbola) to the raw data to in order to extract velocity.
It is important that you only perform hyperbola fitting on target responses where the GPR system has crossed the target perpendicularly. Hyperbola-fitting on a target that was crossed at an angle produces poor velocity values, fuzzy depth slice images, and inaccurate depth measurements.

To access velocity calibration, in the menu bar click Tool > Hyperbola Velocity Calibration.
Alternatively, in the toolbar click $\stackrel{\sim}{\sim}$.
Note: this feature toggles the Hyperbola Velocity Calibration window on and off so it must be clicked again after calibration is completed. If the velocity value has changed, a Yes/No message box appears to confirm that you want to change the velocity value.

5.4.2.1 Velocity Calibration Window

Selecting Hyperbola Velocity Calibration prompts a hyperbola to appear on the GPR line image. If no PR line window is opened, a new one is automatically opened.
The window first displays the current GPR line.
Press Line Up and Line Down and Line Left and Line Right to move through the GPR lines and display one with a good hyperbola for the velocity calibration.

If necessary, you can change the value to make the hyperbola more visible.

5.4.2.2 Hyperbola Fitting

The objective for hyperbola fitting is to superimpose the hyperbola over the data on top of a hyperbola in the GPR line image and then match the shape by dragging the handles on the end of the hyperbola tails.
To determine velocity, the superimposed hyperbola does not need to be placed at the very top of hyperbola in the image.
a. Select the colored band on the most visible hyperbola that has the longest tails.
b. To move the superimposed hyperbola, click the position on the GPR line image where you want to set the apex (top) of the hyperbola.
The hyperbola automatically jumps to the new position.

After the hyperbola has been positioned at the apex of the hyperbola in the GPR line image, match the shape of the hyperbola.

To change the shape of the hyperbola, click the diamond shaped handle on the ends of the hyperbola tails and then drag it to the position that best matches the shape of the image hyperbola.

Once the hyperbolas are matched, click Hyperbola Velocity Calibration again to exit velocity calibration mode.
If the velocity value has changed, in the message box click Yes to accept the new velocity value, or No to discard the changes.

When you accept a new velocity, the grid data is automatically processed using the new velocity. The depth slice images and depth axis in the GPR line window will automatically update.
During the hyperbola velocity calibration, the Status Bar along the bottom of the SliceView-Grid window displays information including the velocity, depth, and time of the hyperbola. As the hyperbola shape changes, the velocity and depth also change. The depth value is always for the apex (top) of the superimposed hyperbola.

5.4.2.2.1 Target of Known Depth

You can also use Hyperbola Velocity Calibration to determine velocity using a target at a known depth.
a. For a target at a known depth, such as the one in the following image, the known thickness of a concrete slab, place the apex of the hyperbola on the reflection of the target.
Adjust the velocity by dragging the hyperbola handles until the depth value listed at the bottom of the screen matches the known depth.

For example, if the reflection from the bottom of concrete is visible in the GPR line image, and the depth of the concrete is known, the apex of the hyperbola can be positioned on that reflection and the velocity changed until the depth value displayed on the bottom of the window matches the known depth.

5.4.2.3 Measure

Use the measure tool to measure the straight-line distance between any two points on a depth slice or GPR line image.
a. To access the Measure tool, in the menu bar, click Tool > Measure.

To measure the distance between two points, click the start position.
Drag and drop the cursor at the end position.
The distance between the two points (in the current units) is displayed on the Status Bar at the bottom of the screen.

It is important to understand that measurements made on GPR lines are based on the velocity so an accurate velocity is critical for an accurate measurement.
To exit from the Measure tool, click Toggle Measure Tool.

5.5 Window

5.5.1 New Plan View Window

In the menu bar, click Window > New Window to open another instance (window) of the current Depth Slice View window.
This is useful when looking at different slice views at the same time.
Windows display a green number on the left side of the title banner to indicate which data set they belong to. For example, all the windows associated with the first GFP file opened will have a number 1 in the banner, and all windows associated with the second GFP file opened will have a number 2 in the banner, and so on.

When multiple plan view windows open, only one can be active at one time. However, changing some variables, such as data processing parameters, velocity, slice thickness, and color palette, change the value for all plan view window instances. Other variables, such as Show Collected Lines, Show Scale, Show Scale Grid, Show Legend, and Show Slice only apply to the active window.

5.5.2 New GPR Line Window

Use this feature when you are looking to display different GPR line images at the same time.
Click Window > New GPR line Window to open a GPR line window for the current grid survey.
Windows display a green number on the left side of the title banner to indicate which data set they belong to.

5.5.3 Cascade

Click Window > Cascade to open windows to cascade on the screen, that is, the front section is completely visible and the title lines from the other sections are visible and accessible.

5.5.4 Tile Horizontally

In the menu bar click Window > Tile Horizontally to display all open windows so they are tiled horizontally.

Alternatively, in the toolbar click目

5.5.5 Tile Vertically

In the menu bar, click Window > Tile to display all open windows so they are tiled vertically.
Alternatively, in the toolbar click \square

5.5.6 Arrange Icons

Click Window > Arrange Icons to change the order of all icons (minimized windows).

5.5.7 Selecting an Open Window

Click Window to display a list of all the currently open windows

```
Window Help
    New Plan View Window
    New Cross-Section View Window
    Cascade
    Tile Horizontally
    Tile Vertically
    Arrange Icons
    1C:{data'{;resnolgrid},fresno.gfp:1
    2 C:idata'{resnoigridifresno.gfp:2
    3C:\datal;fresnolgrid\{fresno.gfp:3 [Slice(ft)2.000-2.500]
\checkmark 4C:'data'{;resnoigrid}{fresno.gfp:4
    5C:idatalfresnoigrid,fresno.gfp:5
    6C:{data\{fresnolgrid,fresno.gfp:6
```

A checkmarks indicates the active window. To change the active window, in the list, click another window.

5.6 Help

5.6.1 Contents

Click Help > Contents to open the SliceView User's Guide.

5.6.2 Sensors \& Software Contact Information

Displays contact information for Sensors \& Software including mailing address, email addresses, phone, and fax numbers.

5.6.3 About SliceView

This option displays a description, version number, and product number of SliceView-Grid.

6 Opening SliceView-Lines

SliceView is an optional module of the EKKO_Project software. To access SliceView-Lines, you must first open EKKO_Project.
SliceView-Lines is only accessible when the project (gpz) file contains lines with 2D positioning, either through GPS or by manually adding Line Positioning to the GPR lines (see the Line Positioning routine in the EKKO_Project manual).
a. To open EKKO_Project, click Start > All Programs > Sensors \& Software GPR > EKKO_Project.

The Getting Started dialog box automatically opens to assist you to select a project file containing the line(s) to process into depth slices.

In the Getting Started dialog box, click \rightarrow Browse for Project File...
Alternatively, click Add Lines or Add all Lines in a Folder to create a new project with lines.

In the Open dialog box, navigate to and then select GPR lines, a folder containing GPR lines or project file.

Note: If you are opening a project only gpz files are listed. If you are adding lines to a project file, only .hd files are listed.

Click Open. The line(s) are displayed in the Project Explorer:

\begin{tabular}{|c|c|c|}
\hline Proj \& \& 4

\hline New Lineset \& Add Grid \& Add Line(s) Lineset

\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
■- Gid GolfGreen-RandomGrid-1mL

lineset
\square $\overrightarrow{-0}$--g-

line4
\end{tabular}}

\hline
\end{tabular}

In Project Explorer, select a GPR line or check one or more lines to process into depth slices.

Select SliceView-Lines in one of these ways:
a. In the EKKO_Project menu bar, click SliceView-Lines from the dropdown menu on the side of the SliceView button on the toolbar.

b. Another method is to select the menu item Tools > SliceView-Lines.
c. To process a single line, right-click on the line in the Project Explorer window and click SliceView-Lines.

The SliceView-Lines settings dialog opens.

6.1 SliceView-Lines Settings

The first time the SliceView-Lines dialog opens, the settings are set to default values.

6.1.1 Name

Name is the name of the Line Slice generated. This name is displayed in the Layer View window and can be checked to display the line slice data image in MapView or unchecked to hide it.

The SliceView-Lines dialog always opens with a new default name. Use the dropdown list to select previously processed Line Slice name; useful when reprocessing a Line Slice with modified settings.

6.1.2 List Affected Lines

The List Affected Lines button displays a list of the GPR lines used to generate the current Line Slice. This button is not accessible when generating a new Line Slice; it is only accessible if the selected Line Slice was generated previously and is now being edited.

6.1.3 Process

There are several processes that are usually applied to the GPR Lines before generating the depth slice. These are listed in the Process box at the top of the dialog.
When Auto is selected, the default settings for all the processes are applied before generating the depth slice.
When Advanced is selected, the user can decide which processes to include and modify the parameters for that process.
In general, it is best to run in Auto mode, so all the recommended processes are included in generating the depth slice.

6.1.3.1 Velocity

An accurate velocity is necessary for generating the clearest depth slice images and accurately determining the depth of an object from the GPR line images.

The default velocity is $0.10 \mathrm{~m} / \mathrm{ns}$ or $0.328 \mathrm{ft} / \mathrm{ns}$ but, if possible, the user should open the GPR line or lines in the LineView module and measure the velocity by using the hyperbola-fitting method (see the LineView manual). If processing more than one line and the velocity varies between lines, the average velocity is used.

6.1.3.2 Processes

If Advanced is selected, the process checkboxes are enabled for the user to modify the processing applied to GPR line(s) before depth slices are generated.

Dewow is explained in DME Processing.

Background Subtraction is explained in Background Subtraction

The Background Subtraction Filter Length defaults to zero (0). This uses the total length of the GPR line (see Total Background) which may not always create the best depth slices, especially if your GPR line data is very long, crosses different surface materials, has many horizontal bands in it or the terrain is rough. In these cases, set Process to Advanced and experiment with a few different Filter Length values (see Local Background) and see which one works best. Remember that the shorter the Filter Length, the more horizontal signals are removed from the data so if your goal is to emphasize hyperbolic targets, use a shorter Filter Length but remember that a shorter filter length removes more data. Three good Filter lengths to try are $10 \mathrm{~m}(30 \mathrm{ft}), 2 \mathrm{~m}(6 \mathrm{ft})$ and 1 m (3 feet).
Migration is explained in DME Processing.
Envelope is explained in DME Processing.
Gain is explained in Amplitude Equalization Gain. If Gain is unchecked, the Gain options lower down in the dialog box are greyed out and not accessible:

6.1.3.3 Gain

Gain applies a gain to depth slice data to compensate for weaker signals at depth. Use this feature to compare the relative signal strengths of targets in different depth slices.
Select Auto, Level or Advanced. These options are explained in Amplitude Equalization Gain.

Note that Auto may not provide enough gain for depth slices. If your depth slices are not showing the full range of the color palette (see below), change the Gain from Auto to Level and reprocess the depth slices with a gain level from 1 to 12, increasing the Level and reprocessing the depth slices until there is a full range of colors visible in the depth slices.

Gain = Auto

Gain Level $=6$

6.1.3.4 Slice

The Slice settings include the Color Palette the depth slices are displayed with, the Slice Thickness, the percent of Overlap between slices and the Maximum Slice Depth. If the Slice settings are set to Auto, default values are used. Selecting Advanced allows the user to modify the settings.

Use the dropdown to select the Color Palette. For more information, see Slice Color Palette.

Thickness is explained in Slice - Thickness

Overlap percentage is explained in Slice - Overlap

Maximum Slice Depth is explained in Slice Depth Limit

6.1.3.5 Interpolation

After the GPR line data are processed, it is interpolated based on the Neighborhood Radius and the Pixel Width values. From the dropdown, the options are Low, Medium, High and Advanced.
The values for the Neighborhood Radius and Pixel Width are based on low, medium and high settings for the recommended line spacing for grid data collected with the antenna frequency. The lower the frequency (and the longer the GPR antenna), the higher the values for the Neighborhood Radius and Pixel width (see table below).

If the Interpolation is set to Advanced, the user can set the values for the Neighborhood Radius and Pixel Width.

Neighborhood Radius

The GPR signal amplitudes are interpolated over an area defined by the Neighborhood Radius.

To generate a continuous depth slice with few or no gaps, the Neighborhood Radius should be set to the $1 / 2$ the average distance between lines. Use the Measure tool in EKKO_Project to measure this distance (see the EKKO_Project manual).
If the Neighbourhood Radius is less than the $1 / 2$ the actual line spacing, the depth slices will have gaps in them. In the example below, the actual line spacing is about 0.5 to 1.2 m and the Neighborhood Radius is 0.25 m (diameter is 0.5 m), so some areas of the depth slice show gaps up to 0.7 m wide (1.2 m actual -0.5 m interpolation $=0.7 \mathrm{~m}$).

Beware of setting the radius too high; this interpolates the data over a larger area which reduces amplitudes, spreads responses over a larger area and may give a false sense of where data were actually collected.

Pixel Width

Pixel Width is the physical size of the smallest pixel of data in the depth slice. Smaller pixel widths will produce higher resolution depth slices but will take longer to generate.
In general, the Pixel Width should be about $1 / 4$ to $1 / 10$ th the Neighborhood Radius; the default value is $1 / 5^{\text {th }}$.
Beware of making too small a pixel size as it may create a false sense of data resolution. For example, if the data traces are actually spaced 0.25 meter apart, it does not make a lot of sense to set a pixel size of 0.01 metres.

The following table shows the default values for Neighborhood Radius and Pixel Width based on the antenna frequency and the level of interpolation (Low, Medium, High).

Centre Frequency (MHz)	Low Interpolation		Medium Interpolation		High Interpolation	
	Radius	Pixel Width	Radius	Pixel Width	Radius	Pixel Width
1000	0.2	0.04	0.1	0.02	0.05	0.01
500	0.5	0.1	0.25	0.05	0.125	0.025
250	1	0.2	0.50	0.1	0.25	0.05
200	1	0.2	0.50	0.1	0.25	0.05
100	2	0.4	1.00	0.2	0.50	0.1
50	4	0.8	2.0	0.4	1.0	0.2
25	8	1.6	4.0	0.8	2.0	0.4
12.5	16	3.2	8.0	1.6	4.0	0.8

For example, here is the same depth slice from the same GPR line plotted using Interpolation settings of low, medium and high:

Low

Medium

High

6．2 Viewing Depth Slices in MapView

After the depth slices are generated they are displayed as a layer in the MapView window．

Note that the checkboxes in the Layer View window control what is displayed in MapView so if you do not see the depth slice，it may be because the Line Slices checkbox is not checked．

Layer View	
$\square \square$ RandomGrid＋Grid＋Lines	
，\checkmark 雨 ${ }^{\text {a }}$ Background Image	
¢気 Line Slices	
－\checkmark Line Slice 1	
\checkmark Grid Slices	
\square PCD Slice	
$\checkmark \stackrel{\text { V }}{ } \stackrel{\text { Lines }}{ }$	
\checkmark GPS	
－$\square^{\text {Plags／Fiducials }}$	
\checkmark 四 Interpretations	
\checkmark 國 Legend	

It is possible to display more than one Line Slice at the same time．The most recently generated image is on top．

Right-clicking on a Line Slice item opens a sub-menu.

Selecting Settings opens the SliceView-Lines dialog to allow the Line Slice settings for that Line Slice to be modified.

Selecting Delete deletes the Line Slice image.
For more details about Layer View, see the EKKO_Project manual.

Appendix A GFP_Edit

Use GFP_Edit to edit a grid or change the relationship between project and global coordinates. To edit a grid, export it from EKKO_Project, and then edit it with GFP_Edit. Once editing is complete, import the edited grid back into the project.

Before you can edit a grid, install GFP_Edit on your computer.

Exporting Grids to GFP_Edit

a. In the Project Explorer, select the grid you want to export.

In the menu bar, click File > Export Line(s) > Line Data.
In the Select folder to export to dialog box, navigate to the folder you want to export to.
a. To create an export folder, right-click in the display pane and create a new folder.
b. Select the folder
c. Click Select Folder.

Editing Grids in GFP_Edit

a. In Windows Explorer, click the exported grid.
b. In the folder, right-click the .gfp file GRID1-Grid \#0001.gfp
c. In the drop-down list, click Open with.
d. In the open with dialog box, click GFP_Edit.
a. If GFP_Edit is not listed, click Browse.
b. In the Open with dialog box, navigate to Sensors \& Software folder.
c. Click GFP_Edit V4 R1.1।
d. Click GFP_Edit V4 R1.1।
e. Click GFP_Edit 4.exe

Click OK．

Edit the grid in GFP＿Edit．

＊i．GFP＿Edit－［（m）GRID1－Grid \＃0001．gfp［C：\Users\DBoylan\Documents\New Lineset\Dan＇s Export\GRID1－Grid \＃0001V］］																					
［－File Edit View Window Help																		－	5	\times	
［［	涌｜的㴗	$m \quad \mathrm{ft}$	F／8，					\square								－					
Grid Name	Line Name	Orientati．．．	Xmin	Xmax	Y ¢												$10 \quad 11$ 川｜III！	$11 \quad 12$ ｜ıIIIII｜｜｜III．｜			
GRID1－Grid \＃0001	XLine 0	X	0.000	9.750	0																
GRID1－Grid \＃0001	XLine 1	X	0.000	9.725	0																
GRID1－Grid \＃0001	XLine 2	X	0.000	9.375	1																
GRID1－Grid \＃0001	XLine 3	X	0.000	9.375	1																
GRID1－Grid \＃0001	XLine 4	X	0.000	11.275	2																
GRID1－Grid \＃0001	XLine 5	X	0.000	11.275	2																
GRID1－Grid \＃0001	XLine 6	X	0.000	10.775	3	10									F3						
GRID1－Grid \＃0001	XLine 7	X	0.000	10.725	3																
GRID1－Grid \＃0001	XLine 8	X	0.000	10.675	4																
GRID1－Grid \＃0001	XLine 9	X	0.000	10.450	4																
GRID1－Grid \＃0001	XLine 10	X	0.000	9.100	5																
GRID1－Grid \＃0001	XLine 11	X	0.000	10.675	5	8															
GRID1－Grid \＃0001	XLine 12	X	0.000	10.650	$6 \equiv$																
GRID1－Grid \＃0001	XLine 13	X	0.000	10.750	6																
GRID1－Grid \＃0001	XLine 14	X	0.000	10.825	7																
GRID1－Grid \＃0001	XLine 15	X	0.000	11.000	7															三	
GRID1－Grid \＃0001	XLine 16	X	0.000	11.125	8																
GRID1－Grid \＃0001	XLine 17	X	0.000	11.200	8																
GRID1－Grid \＃0001	XLine 18	X	0.000	11.500	9				，	－		－									
GRID1－Grid \＃0001	XLine 19	X	0.000	9.475	9																
GRID1－Grid \＃0001	XLine 20	X	0.000	11.725	1																
GRID1－Grid \＃0001	XLine 21	X	0.000	11.950	1																
GRID1－Grid \＃0001	XLine 22	X	0.000	9.275	11																
GRID1－Grid \＃0001	YLine 0	Y	0.000	0.000	0																
GRID1－Grid \＃0001	YLine 1	Y	0.500	0.500	0																
GRID1－Grid \＃0001	YLine 2	Y	1.000	1.000	0																
GRID1－Grid \＃0001	YLine 3	Y	1.500	1.500	0																
GRID1－Grid \＃0001	YLine 4	Y	2.000	2.000	0	2															
GRID1－Grid \＃0001	YLine 5	Y	2.500	2.500	0										F1						
GRID1－Grid \＃0001	YLine 6	Y	3.000	3.000	0																
GRID1－Grid \＃0001	YLine 7	Y	3.500	3.500	0																
GRID1－Grid \＃0001	YLine 8	Y	4.000	4.000	0																
GRID1－Grid \＃0001	YLine 9	Y	4.500	4.500																－	
4 \square^{1}	\square				，	1					－	－	III			．－n		－			
For Help，press F1																29．482 Y	$\mathrm{Y}=0.031 \mathrm{~m}$	GPS：Disab			

Save your GFP file．

To Import the gfp file as a new grid to EKKO_Project, in EKKO_Project, click Add Grid. In the Open dialog box, select the edited gfp file. Click Open.

The new grid is displayed in Project Explorer Right-click the new grid.
In the drop-down list click SliceView.
The new grid is displayed in SliceView-Grid.

Appendix B Glossary

Term or Phrase	\quad Definition			
3D View	Displaying depth or time slices and selected cross sections through a volume. Enables 3D visualization of grid survey data.			
Amplitude Depth / Time Equalization	Equalizing the average amplitudes in all depth/time slices so that equivalent features in slices from different depths/times appear to have the similar amplitude in the generated image.			
Attribute	Characteristic derived from original data. For example, the average amplitude of the dominant frequency between two times or depths.			
Color Palette	The color palette or color table that converts a data attribute like amplitude into color in the creation of depth or time slice images and section views.			
GPR line Image	When profiling data is displayed as a computer generated image, showing signal amplitude varying in time or depth versus position along the line. Often shortened to GPR line or section.			
Cross Section	Multiplication factor used to set the maximum depth displayed on the GPR line view. Maximum depth displayed is this factor multiplied by the Max Depth Limit specified in the slice processing. Shortened to Max Slice Depth Multiplier,			
Maximum Slice				
Depth Multiplier	Depth Gain: is a display gain applied that varies with depth along a trace.	$	$	Profiling data is displayed as a GPR line with the vertical depth scale. Often
:---	:---			
shortened to depth-section or section.				

Term or Phrase	Describes the process of acquiring data on a grid over an area with the goal of creating depth or time slice images.		
Grid Survey	Fitting a hyperbolic shape to a local GPR response in the space-time domain. The fitting process yields a velocity above target and a depth estimate.		
Hyperbolic Fitting	A point source GPR refection appears as a hyperbola in the GPR line Image. Hyperbolic fitting enables the media velocity and target depth to be estimated.		
Hyperbolic Velocity			
Estimate	How much of image is at extremes of Color Palette. Effectively the Color Palette increases the area of extremes of data signal. Given as 0-100\%, with default of 0\% (no added contrast).		
Image Contrast	How sensitive the image is to small signal variations. Effectively the Color Palette widens around the zero signal level. Given as 0-100\%, with default being 100\% (most sensitive)		
Image Sensitivity			Ine maximum separation between lines when interpolating Slice data. Parallel
:---			
Lines separated by more than the limit will result in an area on the Slice			
between the Lines with no GPR signal.(zero amplitude).			

Term or Phrase	\quad Definition
Time Slice	Describes the data acquired between two times - top of time slice and bottom of time slice. Most often a grid survey has the maximum time subdivided into a number of time slices of equal thicknesses.
Time Slice Image	Describes a time slice when the slice attribute is displayed as a computer generated image. This term will normally be shortened to time slice.
Time or Time- Section Image	Term used when line profiling data are displayed as GPR line with the vertical time scale. Quite often the term is shortened to time-section or section.
Time Window	same as Maximum Time
Velocity	Term used to characterize the speed at which GPR signals travel. Velocity is a critical parameter when creating depth slice images and estimating depths of targets since velocity is used to convert travel-time to depth.
X Line	A line oriented in the X direction. $(Y=$ constant while X position varies).
X Line Spacing	Refers to the spacing between X lines when a grid is covered by equi-spaced X lines.
X Slice	Time or depth slice image created from X lines in a grid.
X Y Axes	X and Y are the names given to the two orthogonal directions of a grid. When positioned at the specific corner of the grid which is selected to be the origin of the coordinate system and facing diagonally across the grid, the positive X direction runs to the right along the edge of the grid and the positive Y direction runs off to the left.
X Y Slice	Time or depth slice image created from combining both X and Y lines in a grid.
Y Line	A line oriented in the Y direction. (X = constant while Y position varies).

